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Vorwort

Kasteel Bloemendal, Vaals (NL)

Das 22. Kolloquium Programmiersprachen und Grundlagen der Programmierung (KPS 2023)
setzt eine traditionelle Reihe von Arbeitstagungen fort, die 1980 von den Forschungsgruppen der
Professoren Friedrich L. Bauer (TU München), Klaus Indermark (RWTH Aachen) und Hans
Langmaack (CAU Kiel) ins Leben gerufen wurde. Die erste Veranstaltung fand 1980 in Tannen-
felde im Naturpark Aukrug in der Nähe von Neumünster in Schleswig-Holstein statt.

Die Kolloquien werden seitdem in etwa zweijährlichem Rhythmus organisiert. Aus den ur-
sprünglich drei Arbeitsgruppen sind in der Zwischenzeit weitere Forschungsgruppen in ganz
Deutschland und darüber hinaus hervorgegangen. Heute präsentiert sich die Veranstaltung als ein
offenes Forum für alle interessierten deutschsprachigen Wissenschaftlerinnen und Wissenschaft-
ler. Es bietet einen zwanglosen Austausch neuer Ideen und Ergebnisse aus den Forschungsberei-
chen Entwurf und Implementierung von Programmiersprachen sowie Grundlagen und Methodik
des Programmierens.

Die nunmehr fast 45-jährige Tradition dieser Treffen wird sichtbar in der Liste der bisherigen
Tagungsorte und veranstaltenden Institutionen:

2021 Kiel Uni Kiel
2019 Baiersbronn DHBW Stuttgart
2017 Weimar Uni Jena
2015 Pörtschach am Wörthersee TU Wien
2013 Lutherstadt Wittenberg Uni Halle-Wittenberg
2011 Schloss Raesfeld, Raesfeld Uni Münster
2009 Maria Taferl TU Wien
2007 Timmendorfer Strand Uni Lübeck
2005 Fischbachbau LMU München
2004 Freiburg-Munzingen Uni Freiburg
2001 Rurberg in der Eifel RWTH Aachen
1999 Kirchhundem-Heinsberg FernUni Hagen
1997 Avendorf auf Fehmarn Uni Kiel
1995 Alt-Reichenau Uni Passau
1993 Garmisch-Partenkirchen UniBw München
1992 Rothenberge bei Steinfurt Uni Münster
1989 Hirschegg Uni Augsburg
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1987 Midlum auf Föhr Uni Kiel
1985 Passau Uni Passau
1982 Altenahr RWTH Aachen
1980 Tannenfelde im Naturpark Aukrug Uni Kiel

Das 22. Kolloquium dieser Reihe fand mit 40 Teilnehmenden vom 25. bis zum 27. Septem-
ber 2023 im Kasteel Bloemendal im nierderländischen Vaals bei Aachen statt und wurde von der
Arbeitsgruppe Softwaremodellierung und Verifikation der Fachgruppe Informatik der RWTH Aa-
chen organisiert. Dieser Tagungsband enthält die wissenschaftlichen Beiträge, welche bei diesem
Kolloquium präsentiert wurden. Unser Dank gilt allen Autorinnen und Autoren für ihre Beiträ-
ge, die ein interessantes Spektrum der Forschung in dem Bereich der Programmiersprachen und
sowie der Methodik der Programmierung abdecken.

September 2023 Thomas Noll
Ira Fesefeldt
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Deductive Verification of Probabilistic Programs⋆

Joost-Pieter Katoen1

Software Modeling and Verification Group, RWTH Aachen University, Germany
katoen@cs.rwth-aachen.de
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Abstract. Probabilistic programming is a fascinating new direction in
programming. Meta, Google and Microsoft invest lots of research efforts
in probabilistic programming. Nearly every programming language has a
probabilistic version. Scala, JavaScript, Haskell, Prolog, C, Python, you
name it, and even Excel has been extended with features for random-
ness. These languages aim to make probabilistic modelling and machine
learning accessible to any programmer.

Probabilistic programs are sequential programs extended with random
assignments and conditioning. Bayesian networks, a key model in decision-
making under uncertainty, are simple instances of such programs. The
increasing complexity of probabilistic graphical models such as Bayesian
networks for real-life applications has been an important incentive for
the development of probabilistic programming languages. Probabilistic
programs are used to steer autonomous robots and self-driving cars, are
key to describe security mechanisms, and naturally encode randomized
algorithms. Their learning ability make them attractive for AI and prob-
abilistic machine learning.

Probabilistic programs, though typically relatively small in size, are hard
to grasp, let alone automatically checkable. Bugs can easily occur. The el-
ementary question “does a program halt with probability one for a given
input?” is as hard as the the universal halting problem. The question
“is the expected number of steps until termination finite” is even more
undecidable.

In this invited talk, we will present a deductive verification technique for
imperative probabilistic programs. This technique uses weakest precondi-
tion reasoning and enables determining quantitative program properties
such as the probability of divergence, bounds on the expected program
outcomes, or the program’s expected run-time. Like in classical program
verification, one of the main challenges is to reason about loops. Invari-
ants for probabilistic loops are typically lower and/or upper bounds of
the true meaning of a loop. We will present some proof rules to deter-
mine such bounds and sketch some automated techniques to verify and
synthesize loop invariants.

⋆ Supported by ERC Advanced Grant 787914 FRAPPANT and DFG Research Train-
ing Group 2236 UnRAVeL.
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R2C: AOCR-Resilient Diversity with Reactive
and Reflective Camouflage

Felix Berlakovich, Stefan Brunthaler

µCSRL – Munich Computer Systems Research Lab Research Institute CODE
University of the Bundeswehr Munich Neubiberg, Germany
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Abstract. Address-oblivious code reuse, AOCR for short, is a dangerous,
yet unchallenged code reuse attack. By being able to bypass existing
diversity techniques, AOCR poses a substantial security threat. AOCR’s
authors conclude that software diversity cannot mitigate AOCR, because
it exposes fundamental limits to diversification.
Reactive and reflective camouflage, or R2C for short, is a full-fledged
LLVM-based defense that thwarts AOCR with software diversity and
reactive capabilities through booby traps. In contrast to existing defenses,
R2C combines code randomization techniques with targeted data diversification.
R2C thus proves that AOCR poses no fundamental limits to software
diversification, but merely indicates that code diversification without
data diversification is a dead end. R2C compiles complex real-world
software, such as browsers, offers full support of C++, and different
degrees of optimization with AVX2 instructions.
We evaluate the impact of our defense on performance, and find that
on compute-intensive benchmarks R2C shows an average performance
overhead of 8.33% (geometric mean on SPEC CPU 2017). Our security
evaluation indicates that attacker success at this performance impact is
at most 9%, and conversely the probability of triggering a response is
91%. Given these odds, we argue that R2C is effective at deterring and
disincentivizing brute-force attacks.
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Breaking Class Invariants Through Program
Mutation-based Object State Space Exploration⋆

Jan H. Boockmann and Gerald Lüttgen

Software Technologies Research Group,
University of Bamberg, Germany

{firstname.lastname}@swt-bamberg.de

Comprehending a complex software component is challenging, but neces-
sary for component reuse and maintenance. To make a component reusable, it
usually suffices to document its external behavior and the constraints imposed
on its method argument values. To make a component maintainable, however,
information regarding its external behavior alone is insufficient, because main-
tenance requires the modification of the component’s implementation. Although
class invariants [5,6] that capture constraints on the component’s program state
are essential for maintainers, they are rarely documented. In addition, available
tools [1,4,8,9,10,11] that learn assertions from program execution focus mainly
on function contracts and only a few [2,7] support class invariants. One challenge
is that a diverse set of training data is essential for assertion learning.

This talk presents a new dynamic approach for class invariant learning that
addresses this challenge. In particular, we employ program mutation for the
generation of invalid object states. Program mutation has already been used
in [4,10,11] to assess the completeness of a learned assertion, but not to generate
invalid objects as suitable training data for class invariant learning. We propose
to leverage program mutations to artificially create objects through an object
state space exploration that invokes unmutated and mutated constructors/meth-
ods. In contrast, some related work uses bounded-exhaustive enumeration [7] to
create all objects within specified size bounds, which is only practical for small
bounds and objects having few primitive attributes. Other related work uses
state mutation [8] to create all object states that are slightly different from a
given state. However, these mutations require information about the semantics
of the type being mutated, which is usually only available for primitive types.

Our mutation-based approach uses behavioral oracles derived from (in)formal
specifications to assess whether an artificially created object is invalid. For ex-
ample, a specification may state that no method call should ever throw a null
pointer exception. An artificially created object that throws such an exception is
therefore invalid. We implement oracles as sound but incomplete property-based
tests [3]: while an artificially created object that fails the test is guaranteed to
be invalid, an object that passes the test is not necessarily valid.

Our preliminary evaluation examines how the choice of program mutation
operators and the depth of exploration influence the diversity of invalid object
states generated.

⋆ This research is partially supported by the German Research Foundation (DFG)
under project DSI2 (grant no. LU 1748/4-2).
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Abstract. Still, in the year 2023, C and C++ belong to the most-used
programming languages for developing software. The lack of memory
safety, combined with a high adoption rate, makes programs written in
C and C++ an attractive target for attackers. And so, even after decades
of research, the arms race between attackers and defenders continues. An
attack called Counterfeit Object-Oriented Programming (COOP) has
proven to be particularly resistant to a range of code-reuse defenses.
COOP exploits C++ semantics and, thus, is able to bypass defenses
that do not consider C++.
We present Hashed Object Based Integrity, HOBBIT for short, a prin-
cipled, compiler-based defense against COOP. HOBBIT prevents one
of COOP's core primitives, the ability to manipulate existing, or inject
new virtual table pointers. HOBBIT guarantees the integrity of virtual
table pointers by computing signatures during object creation. To limit
the attack surface of replay attacks, HOBBIT's signatures include run-
time properties of the protected objects. HOBBIT instruments virtual
functions with signature veri�cation checks to detect modi�cations of
virtual table pointers.
We implement a prototype based on clang, a C++ frontend for LLVM.
We benchmarked our prototype with the SPEC CPU 2017 benchmark
suite and measured a geometric mean run-time overhead between ≈
14.88% and ≈ 106.12% over all C++ benchmarks, depending on the
chosen hashing strategy. To optimize the run-time overhead, we have in-
corporated a novel static-analysis that detects vitally important COOP-
gadgets. Analogous to pro�le-guided optimization, our analysis gives rise
to gadget-guided defense application. Initial results con�rm substantial
optimization potential by a factor of up to 50×.
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A Domain-Specific Language for Building
Modular Interpreters

Niels Bunkenburg
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Abstract. Interpreters are a common way to give semantics to a pro-
gramming language. They are easier to implement compared to compilers
and are especially useful for prototyping. At its core – omitting lexing
and parsing – an interpreter is a function that takes the abstract syntax
tree of a program and returns a value that represents the result of the
program’s execution. At some point, the interpretation function needs to
decide how to interpret each individual syntactic construct of the input
language. For example, if the language allows local bindings, the inter-
pretation function needs an environment for storing the corresponding
values of variables occurring in the program. Since many languages al-
low local bindings, this functionality needs to be implemented in almost
every interpreter. We present a domain-specific language based on alge-
braic effects and effect handlers that provides a convenient way to build
interpreters from reusable components. We focus on the implementation
of an interpreter for the functional-logic programming language Curry.
Thus, we not only show how to implement common concepts like lit-
erals, function declarations or pattern matching but also consider how
to implement non-standard features like Curry’s non-determinism, lazy
evaluation and free variables. Finally, we evaluate the benefits of our
approach with respect to code size, modularity and extensibility as well
as the impact on performance. Finally, we discuss how the DSL can be
used to implement interpreters for other languages.
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Optional Type Systems:

Current Approaches and Ongoing E�orts⋆

Werner Dietl
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Abstract. The Java type system gives useful guarantees about software,
but there are many properties that cannot be expressed. One pervasive
property that cannot be expressed is whether a reference can be null or
not. The resulting null pointer exceptions are the bane of programmers
and have been called the �billion dollar mistake�. They happen even if
you think hard about your code and test it thoroughly. There are many
causes for null pointer exceptions, including object initialization, missing
map keys, confusing contracts, and missing checks.
Optional type systems allow developers to improve the quality of their
software by encoding additional properties as type systems and enforc-
ing these properties at compile time. We will discuss a type system
that prevents null pointer exceptions at compile time[1] and the gen-
eral framework it builds upon1. These optional type systems have found
hundreds of bugs in millions of lines of well-tested code. We will dis-
cuss alternative tools and interoperability, in particular with Kotlin,
and the JSpecify e�ort2 to standardize static analysis annotations across
the Java ecosystem. Finally, we will brie�y discuss whole-program type
inference[2,4] and the interaction of optional type systems with deductive
veri�cation[3].

References

1. W. Dietl, S. Dietzel, M. D. Ernst, K. Muslu, and T. W. Schiller. Building and Using
Pluggable Type-Checkers. In Software Engineering in Practice Track, ICSE, 2011.

2. W. Dietl, M. D. Ernst, and P. Müller. Tunable Static Inference for Generic Universe
Types. In ECOOP, 2011.

3. F. Lanzinger, A. Weigl, M. Ulbrich, and W. Dietl. Scalability and Precision by
Combining Expressive TypeSystems and Deductive Veri�cation. OOPSLA, 2021.

4. T. Xiang, J.Y. Luo, and W. Dietl. Precise Inference of Expressive Units of Mea-
surement Types. OOPSLA, 2020.

⋆ We acknowledge the support of the Natural Sciences and Engineering Research
Council of Canada (NSERC) Discovery Grants program, RGPIN-2020-05502, and
an Early Researcher Award from the Government of Ontario. The views and con-
clusions contained herein are those of the authors and should not be interpreted
as necessarily representing the o�cial policies or endorsements, either expressed or
implied, of NSERC or the Governments of Ontario or Canada.

1 https://eisop.github.io/
2 http://jspecify.org/
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Abstract. Industrial-scale reverse engineering affects the majority of
companies in the mechanical and plant engineering sector and imposes
significant economic damages. Although reverse engineering mitigations
exist, economic damage has not been impacted, indicating that they
have failed to address the problem. A closer investigation shows that
industrial-scale reverse engineering typically only expends efforts on repli-
cating hardware, since software can often be copied verbatim—no reverse
engineering effort required.
We present DEPS, a system that binds software to hardware through
physically unclonable functions and software diversity. DEPS transforms
programs such that they only exhibit their intended behavior on the
single machine they are bound to at compile time. When run on any
other machine, the programs will exhibit a different functionality. DEPS
relies on unclonable machine features and thereby forces counterfeiters to
reverse-engineer not just clone the hardware, but to also clone software.
Cloning both hard- and software drives up reverse engineering costs,
thereby, also decreases the economic viability of industrial-scale reverse
engineering.
DEPS works on commodity hardware and does not rely on expensive
hardware components. Our evaluation shows that DEPS is effective and
it incurs less than 5 % run-time performance overhead in a practical case.

⋆ The research reported in this paper has been funded by the Federal Ministry for Cli-
mate Action, Environment, Energy, Mobility, Innovation and Technology (BMK),
the Federal Ministry for Labour and Economy (BMAW), and the State of Upper
Austria in the frame of the COMET Module Dependable Production Environments
with Software Security (DEPS) (FFG grant no. 888338) and the SCCH competence
center INTEGRATE (FFG grant no. 892418) within the COMET - Competence
Centers for Excellent Technologies Programme managed by Austrian Research Pro-
motion Agency FFG.
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Fix Spectre in Hardware!
Why and How

M. Anton Ertl1

TU Wien

Abstract. Spectre can be fixed in hardware by treating speculative mi-
croarchitectural state in the same way as speculative architectural state:
On mis-speculation throw away all the speculatively-performed changes.
The resource-contention side channel needs to be closed, too. This po-
sition paper also explains how Spectre works, why software mitigations
are not sufficient.

1 Introduction

Spectre [SSLG18] is a hardware vulnerability that has been reported to hardware
manufacturers such as AMD and Intel in June 2017, and to the general public
on January 3, 2018. Unlike Meltdown, which has been published at the same
time and has been fixed in hardware relatively quickly1 (or, in the case of AMD,
not built into the hardware from the start), even the latest CPUs with specula-
tive execution from all manufacturers are vulnerable to Spectre, and hardware
manufacturers leave it to software to “mitigate” these vulnerabilities.

New Spectre variations that bypass existing mitigations are discovered reg-
ularly, e.g., the recent discoveries of Intel’s DownFall [Mog23] and AMD’s In-
ception [TWR23] vulnerabilities. Intel lists2 6 “transient execution attacks” pub-
lished in 2018–2021, and, as of this writing (August 2023), 5 published in 2022-
2023 that require software mitigations (sometimes with hardware support) even
on Intel’s most recent Sapphire Rapids server CPU. This includes the original
two Spectre variants (v1 and v2) reported to Intel in June 2017.

In this position paper I present a general approach to fix Spectre in hardware
(Section 9) that would fix not only Spectre v1 and v2, but also, e.g., the recently-
discovered Downfall and Inception vulnerabilities. In order to make this work
understandable to a wide audience, Section 2 explains architecture and microar-
chitecture, Section 3 side channels, Section 4 speculative execution, Section 5
Spectre and Section 6 its relevance. Section 7 argues why we should not seek
the solution to the problem in software mitigations. One possible hardware fix
for Spectre is to eliminate speculative execution, but the performance impact
is unacceptably big (Section 8). Instead, a better fix is to eliminate the side
1 https://www.anandtech.com/show/13450/intels-new-core-and-xeon-w-processors-

fixes-for-spectre-meltdown
2 https://www.intel.com/content/www/us/en/developer/topic-technology/software-

security-guidance/processors-affected-consolidated-product-cpu-model.html
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#r8=0x1000 r9=0xff8

mov (%r9), %r10

add 1, r10

mov %r10, (%r8)

PC=0x200a

...

r8=0x1000

r9=0xff8

r10=5

...

0xff8

0x1000

4

5

registers memory

0x2000

0x2003

0x2007

0x200a

Fig. 1. Architectural state: register and memory contents; this example shows the
architectural state right after the instrucion at 0x2007

#r8=0x1000 r9=0xff8

mov (%r9), %r10

add 1, r10

mov %r10, (%r8)

PC=0x200a

...

r8=0x1000

r9=0xff8

r10=5

...

0xff8

0x1000

4

5

registers memory

0x2000

0x2003

0x2007

0x200a

0x1000

0xff8

5

4

D-Cache
addr dataI-Cache

Branch Predictor

L2 cache

...

Fig. 2. Microarchitecture (yellow background) is normally invisible to software, apart
from its performance effects

channels back from the speculative world into the committed world (Section 9).
Section 10 discusses the costs of this fix. Finally, Section 11 is a call to action
for computer buyers, researchers and CPU manufacturers.

2 What is architecture and microarchitecture?

The architecture (aka instruction-set architecture, ISA) is the interface between
the hardware and the software. Software sees main memory and registers, and
instructions that work on them (see Fig. 1).

On the hardware side of this interface the highest design level is called mi-
croarchitecture. Microarchitecture is generally not visible in the functionality
presented to the software, only through the performance. I.e., instructions gen-
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erally deal only with architectural features such as memory and registers, not
with microarchitectural features such as caches.3

E.g., the cache is a microarchitectural feature, and the CPU works function-
ally in the same way with the cache as without it (or with caches with different
sizes); the only difference is that CPUs with caches run faster. While an access to
main memory takes several hundred cycles on a modern general-purpose CPU,
accessing the level-1 (L1) data (D) cache costs 3–5 cycles. However, the (L1)
D-cache is much smaller (32-128KB on recent CPU cores), and contains only
recently-accessed data.

Speculative execution is another microarchitectural feature and is discussed
in Section 4.

3 What are side channels?

A side channel (aka covert channel) reveals data not directly by letting attacker
read the secret data, but through ancillary properties of data processing.

E.g., if the run-time a program takes depends on the secret, an attacker can
often use this fact to extract the secret (this kind of attack is known as a tim-
ing attack). E.g., a program could contain an if-statement where the condition
depends on the secret, and the run-time of the two branches differs. For pro-
gram code that deals with the dearest secrets (encryption keys and passwords),
avoiding secret-dependent branches has long been best practice.

More generally, the best practice has been to write code that runs in constant
time with respect to the secret.

The timing of memory accesses depends on the input address, thanks to
caches. Caches provide such a big performance boost that we prefer to keep
them and deal with the security implications in some other way rather than use
CPUs without caches.

One case where memory access timing has played a role is AES encryption.
It has been designed in a way that is hard to implement without loads from an
address that depends on the secret key. While that dependence is quite convo-
luted, Bernstein has found a way to use the timing variation due to loads in such
AES implementations to extract the key [Ber05].

3.1 Defending against side-channel attacks

The defense against side-channel attacks first requires realizing that there is
a side-channel, and then taking measures that eliminate the leakage of secret
information through that side channel.

3 There are a few cases where microarchitectural features are managed by software,
and there are instructions for that, e.g., instructions for fetching data into caches
(prefetch), instruction-cache management, or for draining the pipeline to ensure
strictly in-order execution, but these instructions are not relevant for the rest of this
paper.
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As mentioned above, for timing side channels this has usually been done by
writing the pieces of code that deal with the dearest secrets as constant-time
code. These pieces of code tend to be miniscule (hundreds of lines) compared to
the huge amounts of code (millions of lines) for complete programs like a web
browser or an operating system.

While this makes the defense sound like being the responsibility of the soft-
ware people alone (and this perception may have contributed to the lack of
efforts on hardware fixes for Spectre), the software people cannot do it without
support from hardware manufacturers.

In order to write constant-time code, the programmer needs guarantees that
the timing of the used instructions does not depend on the input. Such guarantees
have been historically hard to come by (and were only specified for specific
implementations rather than the architecture), but recently Intel has guaranteed
the input-independence of a subset of instructions for all of its implementations.4

In the AES case, the hardware manufacturers helped, not by making load
timing address-independent (which would be impractical, as mentioned above),
but by providing instructions that perform the problematic steps of AES in
constant time without needing loads.

The discipline of writing constant-time code is used only for cryptographic
and password-handling code, because it requires additional effort and specialized
competencies, because it often results in slower run-time, but also because it is
too limiting and impractical for implementing the requirements of most code.
E.g., while the contents of spreadsheets of big companies and intelligence agencies
may be considered by their users to be at least as secret as the encryption keys
of ordinary citizens, to my knowledge nobody has tried to write a spreadsheet
program with content-independent timing.

4 What is speculative execution?

Most modern general-purpose CPU core use speculative execution, a microar-
chitectural technique that works as follows:

The core’s branch predictor predicts a likely future execution path and then
executes (but does not commit) instructions on that path. The catch is that
the prediction may turn out to be incorrect. In that case the architectural state
(registers and memory) must not be changed in the way indicated by the mis-
prediction prediction. If the speculation turns out to be correct, the changes can
be committed (see Fig. 3).

Modern CPUs with speculative execution do this by conceptually dividing
the core into a speculative part, which contains architectural results-to-be of un-
confirmed speculative execution, and a committed part which contains the actual
architectural state at the current architectural program counter (PC). So when
the core architecturally processes an instruction (by committing (aka retiring)
4 https://www.intel.com/content/www/us/en/developer/articles/technical/software-

security-guidance/best-practices/data-operand-independent-timing-isa-
guidance.html
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# r8=0x1000 r9=2 r11=0x1080
#m[0x1010]=5 
# m[0x10a8]=10
cmp    15,%r9
ja     outofbounds
mov    (%r8,%r9,8),%r10
mov    (%r11,%r10,8),%r12

...
r8=0x1000
r9=2
...
r11=0x1080
...

0xff8

0x1010

14

5

registers memory

...
r8=0x1000
r9=2
r10=5
r11=0x1080
r12=10
...

0xff8

0x1010
...

0x10a5

14

5
...
10

registers memory

speculative architectural state

# r8=0x1000 r9=-1 r11=0x1080
#m[0xff8]=14 
# m[0x10f0]=11
cmp    15,%r9
ja     outofbounds
mov    (%r8,%r9,8),%r10
mov    (%r11,%r10,8),%r12

...
r8=0x1000
r9=-1
...
r11=0x1080
...

0xff8

0x1010

14

5

registers memory

...
r8=0x1000
r9=-1
r10=14
r11=0x1080
r12=11
...

0xff8

0x1010
...

0x10f0

14

5
...
11

registers memory

speculative architectural state

Fig. 3. Two examples of speculative execution, in both cases the ja instruction is
predicted as being not taken. Above: The prediction is correct, and the speculative
architectural state is eventually committed. Below: The prediction is incorrect, and
the speculative architectural state is squashed.

it in the reorder buffer), that instruction has often been speculatively executed
some time earlier, and its result is lying around, waiting to be committed; and
the commit takes this result and turns it into committed architectural state.

However, when a branch turns out to be mispredicted, and this branch is
committed, all the speculative results after the branch (i.e., on the wrong path)
are thrown away, and the processor starts executing on the correct path.

Note that this speculative execution not only contains register updates, but
also stores to memory, possibly including several stores to the same memory
location, and (speculative) loads from that location in between.

There have been many speculative-execution implementations of various ar-
chitectures since the 1990s, and almost5 all of them implemented the handling
of architectural state correctly, both for correctly predicted branches and for
mispredictions, for various kinds of registers, and for memory.

5 What is Spectre?

For microarchitectural state, e.g., the contents of the cache, existing processor
cores do not discern between speculative and committed changes. After all, the

5 The recently-published Zenbleed bug in AMD’s Zen2 core
(https://lock.cmpxchg8b.com/zenbleed.html) is the exception that proves the
rule.
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25
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D-Cache
addr dataI-Cache

Branch Predictor

L2 cache

...

# r8=0x1000 r9=-1 r11=0x1080
#m[0xff8]=14 
# m[0x10f0]=11
cmp    15,%r9
ja     outofbounds
mov    (%r8,%r9,8),%r10
mov    (%r11,%r10,8),%r12

...
r8=0x1000
r9=-1
...
r11=0x1080
...

0xff8

0x1010

14

5

registers memory

...
r8=0x1000
r9=-1
r10=14
r11=0x1080
r12=11
...

0xff8

0x1010
...

0x10f0

14

5
...
11

registers memory

speculative architectural state

S1

S2

S3

S4

Attacker’s architectural state

Fig. 4. A Spectre v1 attack starts with a misprediction (S1), loads the secret (in 0xff8)
into speculative architectural state (S2), changes the cache state in a secret-dependent
way (S3), and finally uses cache timing to extract the secret into the architectural state
of the attacker (S4).

idea is that microarchitectural state is invisible anyway. If a speculative load puts
a line in the D-cache (and evicts another line), this has no architectural signifi-
cance, so the hardware designers have had no qualms at performing this change
speculatively, without a mechanism that cancels it in case of a misprediction.

Unfortunately, this approach opens a side channel that allows to leak data
from the otherwise ephemeral world of misspeculation.

Figure 4 shows an example: The cmp and ja instructions architecturally pre-
vent an out-of-bounds access to the array in r8, but if the branch is mispredicted
to be not-taken, the following code is speculatively executed, and it reads the
address 0xff8 speculatively; by using any other index, any other 64-bit value in
the address space of the process could be accessed, including, e.g., secret keys
or passwords that are there for cryptographic or authentication purposes. Let
us assume that the secret is in memory location 0xff8. In itself the load of the
secret value into the speculative r10 does not appear a problem, because this is
still the ephemeral world of misspeculation, and it cannot get out, right?

Unfortunately, on current it can get out hardware through a cache-based
side channel: The second mov instruction loads a value into the D-cache, and
the address of this load depends on the secret. The loaded cache line replaces a
line that used to be in the cache, and which cache line is replaced depends on
the address. An attacker can repeatedly access a number of memory locations
in order to prime the cache, and can see from the timing of the cache accesses
whether a cache line has been replaced, and in this way learn something about
the secret.
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There are a number of steps involved in Spectre attacks:

S1 The speculation itself: In this example (which is a Spectre v1 attack) a
conditional branch causes speculative execution, but there are others. E.g.,
Spectre V2 uses indirect branches. There are also other speculative mecha-
nisms in modern cores, such as speculating whether a memory load is to a
different or the same address as an earlier store, and this has also been used
in a number of attacks.

S2 The mechanism for getting the secret data into speculative architectural
state. In the example above it is the load from a[i]. In the recently-published
Downfall vulnerability [Mog23], it’s gather instructions as implemented on
some Intel microarchitectures.

S3 The sending side of the side channel for getting the data out of the misspec-
ulation realm. In the example above it’s the access to b[j] that channels
information about j through the cache side channel. But other microarchi-
tectural state can also be used, such as the power state of the AVX unit
[SSLG18].

S4 The receiving side of that side channel. For a cache side-channel this consists
of the attacker priming the cache and monitoring through timing which lines
are replaced by the victim.

There is a lot of variation on all of these steps, leading to the stream of
vulnerabilities that have been found up to now and continue to be found. For
more details (and more aspects) there is a survey of the Spectre and Meltdown
attacks until December 2020 [XS21]. A term that has been used to cover all
these vulnerabilities and attacks against them is “transient execution vulnera-
bilities/attacks”, but in this paper I just use “Spectre” in the same meaning as
referring to all of these speculation-based side-channel attacks.

6 How relevant is Spectre?

Has Spectre been used in the wild? It’s hard to know. Consider the case where
attackers use Spectre to determine your password or encryption key. If they use
that to decrypt your files, you may never know; maybe it was bad luck that
your competitor undercut you by a narrow margin. But even if somebody does
something very blatant like publish your documents on the Internet or encrypt
your files and demand ransom, you usually don’t know how the attacker got at
your password or your encryption key.

However, a working exploit for reading normally unaccessible files on Linux
has been discovered by Julien Voisin.6 There is no proof that this exploit has
been used for an actual attack, but given that it is widely available, it would be
surprising if it has not.

Some people argue that Spectre is not relevant because there are many soft-
ware vulnerabilities that may be used for subverting your system; so why, they
6 https://dustri.org/b/spectre-exploits-in-the-wild.html
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argue, should an attacker bother with Spectre, which is supposedly harder to
use. On the other hand, software vulnerabilities may be discovered and fixed at
any moment, while Spectre exists unfixed on all desktop and server hardware,
and is not even mitigated against in most software. So Spectre may be more
attractive to attackers than some people give it credit for.

7 Why is software mitigation not a good way to deal
with Spectre?

The mitigation of non-speculative timing attacks is to write the few hundred
lines of code that deals with keys and passwords in a constant-time way. Can we
not just deal with Spectre in the same way?

Unfortunately, for Spectre all the software that has the secret in its address
space can potentially be used for an attack, and consequently would have to be
hardened. For a web browser or an OS kernel that is typically millions of lines
of code.

As an example of a mitigation, for the Sprectre V1 example in Fig. 4, spec-
ulative load hardening has been proposed. A simple variant would change the
code as follows:

cmp 15,%r9
ja end
mov $0x0,%rax
cmova %rax, %r9
mov (%r8,%r9,8),%r10
mov (%r11,%r10,8),%r12

end:

Here the cmova hardens the following load, by setting r9 to 0 if r9>15. While
this condition cannot architecturally be true at that place, it can be true during
misspeculation. The cmova instruction uses the same flags as the ja branch, but
the mitigation assumes that cmova does not speculate.

In reality speculative load hardening is substantially more complicated, be-
cause it also has to also deal with possible speculation on earlier branches
[ZBC+23].

Software mitigations have apparently led to the impression that Spectre is
under control and no hardware fix is necessary, but they have a number of
problems:

7.1 Still vulnerable

It has often turned out that many mitigations do not even completely close the
vulnerability for which they are designed.

One reason for that is that the mitigation defends against a too-narrow attack
scenario. E.g., speculative load hardening (SLH) has been implemented in the
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LLVM compiler and is intended to close the Spectre V1 vulnerability presented
above, but it still has some leakage; this was then improved in Strong SLH [GP19]
and recently Ultimate SLH [ZBC+23].

Another reason is that the mitigation relies on assumptions about microar-
chitectural mechanisms that turn out to be wrong; e.g., earlier Spectre V2 miti-
gations assumed that returns would only be predicted from the return stack, but
there are some microarchitectures that use the general indirect-branch predictor
to predict returns when the return stack is empty (so returns can also be used
in Spectre V2 attacks).

Also, these mitigations tend to work only against a specific variant, but new
variants are discovered all the time.

7.2 Performance

These mitigations cost performance, for the whole program (because with Spec-
tre the whole program can be used to reveal the secret). E.g., Zhang et al. report
a factor of around 2.5 slowdown (compared to no mitigation) for SPEC CPU
2017 (int and fp, rate and speed) [ZBC+23]. I saw a slowdown (compared to
using no mitigation) by a factor 2–9.5 from compiling Gforth with the fastest
retpoline mitigation against Spectre V27.

7.3 Effort

Because the slowdowns that you get from applying compiler-based mitigations
across the board are often considered to be unacceptable, there is the idea that
programmers should be more selective and analyse whether each specific place
in a program can actually be used by an attacker, and only harden those places,
lowering the performance cost.

However, this requires a huge amount of effort, and it takes only one place in
the potential attack surface that the programmer mistakenly has not hardened,
and the program is still vulnerable.

And when the next vulnerability and mitigation shows up, you have to do
it all again. And when the program is changed (due to, e.g., new requirements),
you have to analyse more than just the changed lines.8

8 Why is the first idea for a fix not so great?

The first idea many people have for fixing Spectre is to eliminate speculative
execution. While this certainly fixes Spectre by preventing step 1 of the exploits,
the performance impact of this measure is pretty bad: E.g., the core without
speculation that shows the best performance on our LATEXbenchmark9 is the
7 news:<2023Jan15.105348@mips.complang.tuwien.ac.at>
8 The idea that you do not have to reanalyse code when the requirements change

resulted in the Ariane 501 explosion.
9 https://www.complang.tuwien.ac.at/franz/latex-bench
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...

# r8=0x1000 r9=-1 r11=0x1080
#m[0xff8]=14 
# m[0x10f0]=11
cmp    15,%r9
ja     outofbounds
mov    (%r8,%r9,8),%r10
mov    (%r11,%r10,8),%r12

...
r8=0x1000
r9=-1
...
r11=0x1080
...

0xff8

0x1010

14

5

registers memory

...
r8=0x1000
r9=-1
r10=14
r11=0x1080
r12=11
...

0xff8

0x1010
...

0x10f0

14

5
...
11

registers memory

speculative architectural state

S1

S2

S3

speculative microarchitectural state

inst333: mem[0xff8]=14
inst334: mem[0x10f0]=11

Fig. 5. Separating speculative microarchitectural state from committed microarchitec-
tural state eliminates the S3 part (and therefore also S4) of a Spectre attack, as far as
microarchitectural state is concerned; resource-limitation side channels also need to be
addressed, see text.

1800MHz Cortex-A55 on the Rock 5B single-board computer. The Cortex-A76
core (with speculative execution) running at 2275MHz on the same computer is
3.3× as fast for this benchmark, and the 3000MHz Apple Firestorm is 7.8× as
fast.

Given the performance impact, it’s no surprise that we have not seen a resur-
gence of microarchitectures without speculation. The number of customers that
would exchange this much performance for security against Spectre is small. The
customers’ reasoning is as follows: There are lots of vulnerabilities in the soft-
ware we use, so fixing Spectre is not going to make our computers that much
safer. Therefore we are not willing to sacrifice that much performance for this
benefit.

9 How to fix Spectre in hardware?

The less costly and therefore better way to fix Spectre is to prevent step S3.

9.1 Side channels based on microarchitectural state

In particular, for the side channels through microarchitectural state, we can use
the same approach for microarchitectural state as for architectural state: keep
the speculative state separate from the committed state, and squash it when
it turns out that the speculation is wrong. This goes for all microarchitectural
state: D-cache, I-cache, branch predictor, TLBs, etc.
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In the case of D-cache, several papers [YCS+18,KKS+19,AJ20] have already
proposed ways of doing that, probably because the cache side channel has been
the most popular one for Spectre-type attacks. But of course, the other state-
based side channels need to be closed, too.

Some attempts at fixes for state-based side channels have tried to undo the
changes when a speculation turns out to be false, e.g., CleanupSpec [SQ19].
However, I think that it is better to keep the speculative changes separate until
commit time, for the following reasons:

– The microarchitectural state is changed, albeit only for a short time, and
this is visible to potential attackers, given enough effort.

– It is harder to reason about the correctness of an undoing approach than
about an approach that never speculatively changes the non-speculative
state.

– Undoing approaches have been tried for architectural state [DA92], but com-
mitting approaches have won. It is likely that the same reasons will make
undoing of microarchitectural state unattractive.

9.2 Side channels based on resource contention

Apart from the popular state-based side channels, another kind of side channel
is contention for resources such as execution ports, functional units, or cache
ports. SMoTherSpectre [BSN+19] attacks another SMT thread on the same core
by using execution port contention by the speculatively executing victim as a
side channel. Even worse, speculative interference attacks [BSP+21] use resource
contention to affect the timing of an older (eventually committing) instruction
in the same thread.

For the SMT side channel, a solution is to have a fixed partitioning of re-
sources between the threads, so that no thread can use resource contention as
a side channel. This means that resources that exist only once have to be time-
shared. E.g., if there is an non-pipelined divider that takes 20 cycles for the
division, there are fixed 20-cycle time slots for each thread, and when a thread
does not have a division ready at the start of its time slot, that time slot goes
unused. This fixed partitioning will cost some performance; it could be made op-
tional, allowing the full benefit of SMT to be used in settings where the sibling
threads are believed to not spy on each other.

For the same-thread problem, Behnia et al. [BSP+21] describe the high-level
principle: “a speculative instruction must not influence the execution of a non-
speculative instruction”. And they describe two rules that ensure that:

– “No instruction ever influences the execution time of an older instruction.”
They propose to achieve this by giving priority to older instructions in case
of resource contention. They discuss several options how to deal with non-
pipelined execution units. The slot idea above is another way to deal with
that: If a thread can start using the execution unit only at the start of a
slot, the priority approach works for non-pipelined units (although one might
wish for better performance).
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– “Any resources allocated to an instruction at the front end and the execution
engine are not deallocated until the instruction becomes non-speculative”.
This rule ensures that misspeculated code cannot produce timing variations
by congesting the front end.

9.3 Other side channels

Another known side channel is energy consumption. In particular, Meltdown-
Power [KJG+23] uses speculation for S1 and S2, and then a power-based side
channel for S3 and S4. However, it requires that the speculative load updates
the cache, which does not happen with the fix for speculative microarchitectural
state outlined above, so fixed hardware would be immune against this particular
attack.

Still, one can imagine that the energy consumption of e.g., functional units
working on mis-speculatively loaded data could reveal something about the data.
At the moment I have no good hardware answer for that. On the other hand, the
question is if such an attacks can be made practical (i.e., leak relevant amounts
of data in realistic time frames).

10 How much does the fix cost?

The fixes certainly cost design complexity. Hardware architects have been re-
markably good at handling the increasing complexity of modern high-performance
CPUs, and I expect them to rise to the challenge of designing fixed hardware, if
they are given the task.

The resulting CPU cores will require more area, for the speculative state.
E.g., if we want to be able to buffer, say, 30 cache lines loaded from outer cache
levels in speculative microarchitectural state, the memory for these 30 cache
lines is needed, as well as the infrastructure to look up data in them and deal
with snoop messages. Compared to the 224 physical ZMM registers (each with
64 bytes) in Intel’s Sunny Cove core, this does not seem to add that much area;
and I expect that the area for other microarchitectural features will be even
smaller.

Concerning performance, the additional buffers can even help, and for Muon-
Trap [AJ20] the Parsec benchmarks indeed see a speedup by a factor 1.05. How-
ever, SPEC 2006 sees a slowdown by a factor 1.04 compared to vulnerable hard-
ware. And then there is the question of how much speed the additional area
could have produced if it was invested just in performance. On the other hand,
compared to applying software mitigations to all software (e.g., a factor 2.5 for
defending only against Spectre v1), even the SPEC slowdown and the opportu-
nity performance cost of the additional area are small.

One may want to compare with the more selective hardening approach that
is used in, e.g., the Linux kernel. This kind of hardening has not been applied to
the SPEC benchmarks, and the hardware fixes have not been measured on the
benchmarks that are typically used for measuring the Linux kernel performance,
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so a direct comparison is not possible. Looking at Michael Larabel’s results for
how the kernel mitigation of just Inception10 and the firmware mitigation of
just Downfall 11 slows down applications, the slowdowns are often larger than
what has been reported as slowdown from hardware fixes for the cache side
channel. While these are numbers for different programs and mitigations/fixes
for different vulnerabilities, and both comprehensive software mitigations and
comprehensive hardware fixes will have higher cost, I expect that the majority
of the performance cost of a hardware fix is in dealing with the cache (because
of stuff like cache coherence), so I don’t expect the cost of a comprehensive
hardware fix to be that much higher than the cache-only approaches we have seen
yet, while on the software mitigation side, every vulnerability seems to require
its own mitigation, with a program-dependent performance impact, sometimes
very expensive, as discussed above.

11 What should I do?

As computer customers, we should keep asking the CPU manufacturers when
they will finally fix Spectre in hardware; we should tell them that software mit-
igations are not good enough.

And when one of the manufacturers comes out with a CPU with a Spectre
fix, we should prefer these CPUs in our buying decisions even if they are a little
slower at running unmitigated software (or software with mitigations that are
unnecessary for the fixed CPUs). After all, such a CPU will be safer than an
unfixed CPU when both run unmitigated software (the usual case). And such
a CPU will be faster and at least as safe (probably safer) when the fixed CPU
runs software without mitigations and the unfixed hardware runs software with
mitigations.

When CPU manufacturers claim that they have fixed Spectre, only believe
them when they explain how they did it (and only if that explanation does not
have holes); don’t accept hand-waving along the lines of “Differences in AMD
architecture mean there is a near zero risk of exploitation”12.

As computer architecture researcher, you can work at designing and
evaluating mechanisms for fixing Spectre. Even if there is already some work in
that direction, there is probably still some microarchitectural state or other side
channels that have not been covered yet. And even for the microarchitectural
state that has been covered, there are probably ways to improve on it, i.e., a
solution that costs less area and/or less performance.

If your research leans more towards theory, you could work out a formal
description of speculative side channels, and a way how computer architects
could prove that they have closed these side channels. I do not know if they
worked out such an approach to make sure that speculation works correctly for
10 https://www.phoronix.com/review/amd-inception-benchmarks
11 https://www.phoronix.com/review/intel-downfall-benchmarks
12 https://web.archive.org/web/20180104014617/https://www.amd.com/en/corporate/speculative-

execution
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architectural state; it may be (usually) good enough to validate the architectural
design by running test programs, but for microarchitectural state and other side
channels, such an approach is needed, because the side channel does not show
up in the usual architectural validation.

If you work at a CPU manufacturer (or CPU design house), you have
the best opportunity to fix this problem. If the decision is up to you, go ahead
and decide that you will make a Spectre-immune high-performance CPU core.
If the decision is up to someone else, make a case that convinces them that
the fix is worth the development and manufacturing costs by making your CPU
safer than the competition, and to put a stop to the constant stream of new
Spectre- and Meltdown-type vulnerabilities (and the slowdowns from firmware
and software mitigations). Also, imagine what happens if your competition is
first at presenting a Spectre-immune CPU.

12 Conclusion

Attacks like Spectre that extract speculative state through a side channel are
different from earlier side-channel attacks in being impractical to mitigate in
software: not just the small piece of code that deals with the secret, but all
software in the same address space as the secret (including libraries) needs to
mitigate these attacks; E.g., an automatic compiler approach against Spectre v1
alone costs a factor 2.5 in performance, and that does not defend against all
Spectre attacks (e.g., not against Spectre v2). One way to reduce this cost taken
in, e.g., the Linux kernel, is to try to identify places that can be attacked and
only harden those; this costs a lot of programmer effort, has the potential danger
of leaving a hole open, and when another attack is discovered, this effort often
has to be repeated.

Therefore the right way to deal with Spectre is to fix it in hardware. For
speculative microarchitectural state, it should be treated just like speculative
architectural state: During speculation, keep it separate from the committed
state; and when the speculation turns out to be wrong, just squash the specula-
tive state (including speculative microarchitectural state). When the speculation
is correct, turn the speculative state into commited state (e.g., during instruction
commit).

In addition to state-based side channels, resource contention can also provide
a side channel. This can be addressed with a fixed partitioning of resources in
an SMT setting, by always prioritizing older instructions in resource conflicts,
and by managing front-end resources in a specific way.

A hardware fix for Spectre costs some chip area and often also performance
compared to a vulnerable core, but much less than applying a software mitigation
against just Spectre v1 across the board.
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Abstract. Template Metaprogramming is a niche and orignally unin-
tended aspect of C++ that allows arbitrary (turing-complete) computa-
tions at compile time purely within the type system [2]. Its computational
power is mostly based on template specializations and recursive template
instantiations. While some of its applications have been made obsolete
by the introduction of constexpr-functions, template metaprogramming
still sees use in the domain of generic programming in both standard and
user provided libraries.
An unfortunate side effect of template metaprogramming being intro-
duced by accident is a substantial lack of usability features. Its verbose
syntax makes template metaprograms inaccessible as well as hard to
read, write and maintain. There have been various attempts to fix this
situation, ranging from C++-libraries to code generators [1].
Due to the absence of stateful computations in the type system, template
metaprogramming is frequently considered to be a purely functional pro-
gramming system. This motivates the idea of having programs in a func-
tional programming language translated into template metaprograms to
provide programmers with a more concise language to work with that is
both easier develop and maintain programs in.
The presented work explores this idea further and provides useful pat-
terns to translate a higher level functional programming language into
template metaprograms.
This includes a) a generalized, structure-preserving pattern to trans-
late expressions into so called expression classes, combined with code
reduction techniques that reduce the structural overhead introduced by
the generalized translation, b) working around C++’s strict define before
use principle to allow mutual recursive template metafunctions both lo-
cally and across multiple files/modules, and c) a technique to support a
first-match policy rather than a most-specific-match policy for pattern
matching.
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Abstract. Coordination is a well established computing paradigm with
a plethora of languages, abstractions and approaches. The functional
coordination language TeamPlay follows the approach of exogenous co-
ordination and organises an application as a streaming data-flow graph
of independently operating, state-free components.
In this work we capitalise on this stringent application architecture for
fault-tolerance against both permanent and transient hardware failure.
We extend the TeamPlay language by a range of fault-tolerance features
to be selected by the system integrator. We further propose a multi-core
runtime system that is able to isolate hardware failures and manages to
keep an application running flawlessly in the presence of hardware failure
through adaptively morphing the application.

1 Introduction

Cyber-physical systems (CPS) are a computing paradigm which involves sys-
tems that interact with both the hardware they run on and the physical world
around us [1]. Examples of this can be found in several areas such as self-driving
cars, autonomous drones, robotics, and building & environmental control. Com-
monly, these systems also have non-functional requirements. These requirements
are manifested in facets such as timing, energy-consumption, security, and ro-
bustness [2, 3]. These requirements often involve trade-offs; e.g., executing an
action in less time usually incurs higher power consumption. Adding robustness
or fault-tolerance through redundancy likewise incurs a higher power consump-
tion and a higher response time or more hardware to meet deadlines.

Safety-critical systems (especially in multi- or heterogeneous systems) require
extensive validation, which is hard to do when non-functional properties, like
fault-tolerance, are intertwined with computational code. In the CPS paradigm,
the scientific community has been calling out to the creation of higher-level
abstraction layers to alleviate the burden on the programmer [2, 4, 3].

We propose the coordination language TeamPlay [5]. Coordination languages
[6] can be used to manage the interaction between separate activities or com-
ponents into an often parallel system [7]. The TeamPlay coordination language
[5] enables the management of non-functional aspects of cyber-physical systems
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and facilitates the separation of concerns between coordination and computation
code. Coordination code defines the structure of the application and manages
non-functional properties on a high level. The computation code, in contrast,
can focus on functional correctness while letting the coordination code actively
manage the non-functional properties.

2 Coordination model

The term coordination goes back to the seminal work of Gelernter and Car-
riero [8] and their coordination language Linda. Coordination languages can be
classified as either endogenous or exogenous [9]. Endogenous approaches pro-
vide coordination primitives within application code; the original work on Linda
falls into the category. We pursue an exogenous approach that completely sepa-
rates the concerns of coordination programming and application programming.
Software components serve as the central artefact in between.

2.1 Components

Our exogenous approach fosters the separation of concerns between intrinsic
component behaviour and extrinsic component interaction. The notion of a com-
ponent is the bridging point between low-level functionality implementation and
high-level application design. We illustrate our component model in Figure 1.
Following the keyword component we have a unique component name that serves
the dual purpose of identifying a certain application functionality and of locating
the corresponding implementation in the object code.

contracts:

time

energy

security

input

output

state

component
code

state*

Functional
contracts:

* *input outputNon−functional

<name>

Fig. 1. Illustration of component
model

A component interacts with the out-
side world via component-specific numbers
of typed and named input ports and out-
put ports. As the Kleene star in Figure 1
suggests, a component may have zero input
ports or zero output ports. A component with-
out input ports is called a source component ;
a component without output ports is called
a sink component. Source components and
sink components form the quintessential in-
terfaces between the physical world and the
cyber-world characteristic for cyber-physical

systems. They represent sensors and actors in the broadest sense. We adopt the
firing rule of Petri-nets, i.e. a component is activated as soon as data (tokens)
are available on each input port.

Technically, a component implementation is a function adhering to the C call-
ing and linking conventions whose name and signature can be derived from the
component specification in a defined way. This function may call other functions
using the regular C calling convention. However, the execution of the function,
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including execution of all subsidiary functions, must not interfere with the ex-
ecution environment. Exceptions to the former restriction are source and sink
components that are supposed to control sensors and actors.

2.2 Stateful components

Our components are conceptually stateless. However, some sort of state is very
common in cyber-physical systems. We model such state in a functionally trans-
parent way, as illustrated in Figure 1. We employ so-called state ports that are
short-circuited from output to input. In analogy to input ports and output ports,
a component may well have no state ports, which is what we consider the norm
rather than the exception.

Our approach to state is in an interesting way not dissimilar from main-
stream purely functional languages, such as Haskell or Clean. They are by no
means free of state either, for the simple reason that many real-world problems
and phenomena are stateful. However, purely functional languages apply suitable
techniques to make any state fully explicit, be it monads in Haskell [10] or
uniqueness types in Clean [11]. Making state explicit is key to properly deal
with state and state changes in a declarative way. In contrast, the quintessential
problem of impure functional and even more so imperative languages is that
state is potentially scattered all over the place. And even where this is not the
case in practice, proving this property is hardly possible.

2.3 Non-functional properties

We are particularly interested in the non-functional properties of code execution,
namely energy, time and security while we now add fault-tolerance for robustness
against hardware failure, both permanent and transient. Hence, any component
not only comes with functional contracts but additionally with non-functional
contracts. These contracts can be inherently different in nature. Execution time
and energy consumption depend on a concrete execution machinery. In contrast,
security, more precisely algorithmic security, depends on the concrete implemen-
tation of a component, e.g. using different levels of encryption. However, dif-
ferent security levels almost inevitably incur different computational demands
and, thus, are likely to expose different runtime behaviour in terms of time and
energy consumption as well.

2.4 Multi-version components

As illustrated in Figure 2, a component may have multiple versions, each with
its own energy, time and security contracts, but otherwise identical functional
behaviour. More security requires stronger encryption which requires more com-
puting and, thus, more time and energy. However, many systems do not need to
operate at a maximum security level at all times. Take as an example a recon-
naissance drone that adapts its security protocol in accordance with changing
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mission state: low security level while taking off or landing from/to base station,
medium security level while navigating to/from mission area, high security level
during mission.
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contracts:

* *input output

input

<name>

Fig. 2. Multi-version component
with individual energy, time and
security contracts

In low security mode, the drone can use
a less resilient encryption when communicat-
ing with the base station while highest pos-
sible security is paramount in a potentially
hostile environment. Continuous adaptation
of security levels results in less computing and,
thus, in energy savings that could be exploited
for longer flight times. Our solution is to em-
bed different versions of the same component
that are all functionally equivalent, but expose
different trade-offs regarding non-functional
properties, similar to [12].

2.5 Component interplay

Components are connected via channels to exchange data, as illustrated in Fig-
ure 3. Depending on application requirements, components may start comput-
ing at statically determined time slots, when all input data is guaranteed to be
present or may be activated dynamically by the presence of all required input
data. Components produce output data on all or on selected output ports.
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Fig. 3. Illustration of data-driven component interplay via FIFO channels

3 The TeamPlay Language

Figure 4 shows the TeamPlay coordination code an imaginary subsystem of a
car, where two sensors feed messages to a decision controller, which synchronises
the messages pair-wise and sends commands to two subsequent actuators.

A TeamPlay application definition starts with the keyword app followed by
an identifier that serves as the application’s name. Enclosed within curly brack-
ets we can identify the two major code regions of any TeamPLay coordination
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program: components with their inports and outports as well as channels con-
necting outports to inports. The syntax of inport and outport specifications is
inspired by C struct definitions: pairs of type name and port name separated by
semicolons and embraced in curly brackets. The mapping of type names used on
the coordination level and type implementations in compiled code as wel as in
component implementations is not provided through the coordination program,
but rather through a separate configuration file.

app car {
components {

DistSensor {
outports {num dist}

}
ImageCapture {

outports {frame frameData}
}
Decision {

inports { num dist; frame frameData}
outports { num voltage}

}
LeftActuator {

inports {num voltage}
}
RightActuator {

inports {num voltage}
} }
channels {

DistSensor.dist -> Decision.dist;
ImageCapture.frameData -> Decision.frameData;
Decision.voltage -> LeftActuator.voltage

& RightActuator.voltage;
} }

Fig. 4. TeamPlay code for example of Figure ??

3.1 Components

Components serve as representations of stateless computations that map in-
put data tokens on typed incoming streams to output data tokens emitted on
typed output streams. Following the approach of exogeneous coordination the
actual computation is outside the scope of the coordination code. We link our
compiled coordination code with independently provided and compiled compo-
nent implementation code. Given our focus on cyber-physical systems we assume
component implementations to be written in C or possibly in C++. A compo-
nent definition starts with a name followed by a pair of curly brackets enclosing
further information about the component.
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As components communicate with other components via (FIFO) channels,
the corresponding ports are the most vital functional properties (or contracts)
of components. Following the key words inports, outports or state (The latter
is not shown in the running example, but the syntax is identical.) we have a
list of pairs of port type and port name adopting a syntax inspired by C struct
defintions.

3.2 Channels

Components are connected with each other via channels. In Figure 4 we can
identify two kinds of channels: regular channels connect a single outport to a
single inport while broadcast channels using an ampersand send a single data
item from one outport to multiple inports. The TeamPlay compiler applies static
analyses to guarantee type correctnes, absence of cycles and restriction that any
port is connected to at most one channel. Normally, ports are identified by
component name and port name separated by a dot, but the port name may be
omitted if a component only has a single outport or a single inport.

3.3 Non-functional properties

As pointed out before, one of the goals in the design of the TeamPlay coordi-
nation language is the active management of non-functional properties, namely
energy, time and security. Both energy and time can only be considered in rela-
tion to some concrete execution machinery. Thus, any mentioning of energy or
time in the coordination source code would inherently make the code hardware-
specific, which is not what we want. In contrast, we employ a non-functional
properties file (NFP) that functions as a data base storing per component time
and energy consumption values for the variety of hardware execution units of in-
terest (and perhaps even DVFS settings). Depending on the concrete hardware
properties, concrete values can be derived from static code analysis, dynamic
profiling or simply asserted by the user.

components {
Encryption {

inports { frame original}
outports { frame encrypted}
security 4;
arch "arm/big"

}

Fig. 5. Example of a component with non-functional properties: security and architec-
ture

The third non-functional property of interest, security, differs from energy
and time as security (in our interpretation of the word) is an algorithmic or
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code property that is independent of the actual execution machinery. As demon-
strated in Figure 5, line 5, TeamPlay supports the specification of a security level
in form of a natural number, using the security key word. Here, we interpret
higher numbers as denoting better security. Any concrete meaning of security
levels, however, are application-specific. In a similar way we can specify a class
of hardware on which the component must be scheduled for execution using the
arch key word and a string.

3.4 Multi-version components

With our focus on non-functional properties, it becomes particularly interesting
to have multiple versions of a component that expose identical functional be-
haviour, but that implement different trade-offs of the non-functional properties
of interest. Figure 6 demonstrates how this can be accomplished in TeamPlay.

components {
Encryption {

inports {frame original}
outports {frame encrypted}
version WeakerEncryption {security 4}
version MediumEncryption {security 6}
version StrongEncryption {security 9}

} }

Fig. 6. Example of a multi-version component. The Encryption component has three
different implementations, each with a different security value.

The new definition of the Encryption component features three different ver-
sions, distinguished by three different security levels. Different versions of one
component all share the same port specifications and must behave identically
from the functional perspective.

4 Extensions for fault-tolerance

We extend the core TeamPlay language by a range of fault-tolerance methods.
We opt for a user-directed approach where the user can specify which of the
predefined options to apply in different parts of the application. This is due to
major challenges in having a compiler or scheduler analyse the criticality of a
component in the application as a whole. Furthermore, the way fault-tolerance is
implemented and achieved needs to be transparent to the programmer in order
to make sure they they fit the application requirements.

4.1 Checkpoint/restart

Checkpoint/restart lets the system return to a stable (backup) state when a fault
has occurred [13, 14]. Generally, the downside of checkpoint/restart methods is
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the concrete state of some failing software unit is difficult to assess and, thus,
in the worst case the entire process image needs to be saved at each checkpoint.
That is prohibitively expensive, both in storage space and execution time.

Here the architecture of our coordination-based approach pays off. It creates
a middleware layer where our system software can precisely keep copies of the
arguments of an individual component invocation before giving control to the
third-party provided component implementation. The stateless nature of Team-
Play components ensures that no other data affects the computation. Note here
that this property remains valid even if state ports are used as described in Sec-
tion 2.2. The backup copies of the argument values only need to be stored while
the component is computing. As soon as it emits its output data on its outports,
the backup copies can be discarded.

Decision {
inports {frame frameData; int dist}
outports {int voltage}
checkpoint {}

}

Fig. 7. Defaults of the checkpoint/restart specification.

The benefits of using checkpoint/restart are (potentially) three-fold: imple-
mentation is straightforward, coordination between hardware components is not
needed, and it only requires extra memory and copy time but no redundant
active components. Figure 7 shows how checkpoint/restart can be specified on
the Decision component from Figure 4. Currently, our specification of check-
point/restart has no supported options, hence the empty pair or curly brackets.

4.2 Standby or primary-backup

In standby or primary-backup methods, standby components can take over the
active computing component in case of failure. Initially, the output of the primary
process is used. Should a fault be detected, the output of the standby component
is used instead. A distinction can be made between cold, warm and hot standby
which differ in the amount of synchronisation the backup components have to
the active components [15]. These types can be distinguished as follows:

cold: backup component(s) are initialised but then turned off;
warm: backup component(s) are synchronised with primary component at spec-

ified points;
hot: backup component(s) are continuously synchronised with primary compo-

nent.

In case of crash failures, components with long startup times benefit from
this type of synchronisation because the working component can be taken over
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faster when using primary-backup [15]. Generally, the number of required com-
puting resources for primary-backup are lower compared to methods like NMR.
Especially using cold standby can save a lot of energy resources, which is impor-
tant in (often) battery powered systems like those in the cyber-physical class.
The main disadvantage of this method is that a fault needs to be detected before
the redundant component can take over. Furthermore, primary-backup cannot
detect value faults (i.e., there is no voting) and it relies on an error detection
method to detect faults, so that the active component can be taken over. Thus,
this method is primarily useful in systems which require fast switch times while
keeping a state close to the state of the original, crashed process [15].

In primary-backup, the state of the primary and standby component is syn-
chronised. The degree of this synchronisation depends on which flavour, cold,
warm or hot is implemented. This allows the application to quickly switch out-
puts when a fault is detected. In TeamPlay, the firing of a component is discrete,
i.e., every execution produces output tokens only once. This, together with the
fact that state is made explicit in the buffers of the edges, means that it is not
necessary to run the primary and standby components at the same time, i.e.,
they do not have to be synchronised. We can simply provide copies of the input
tokens to the hardware units and take the first unit who delivers an output as
the primary component. If it fails, one of the standby components will deliver
output instead. This makes this method predictable as one does not have to
account for switching from the primary to the replica component or synchroni-
sation mechanisms.

Figure 8 shows the way primary-backup can be specified. The specified op-
tions again use default values. The replicas option can be specified as an integer
denoting the number of replicas to run for this component.

Decision {
inports {frame frameData; int dist}
outports {int voltage}
standby {replicas 2}

}

Fig. 8. Defaults of the primary-backup specification.

4.3 N-Modular redundancy

A classic example of physical redundancy is N-modular redundancy (NMR).
In this strategy, n independent identical processes are executed with identical
input [13, 15]. These n processes are followed by voting processes, which vote
which answer they will be outputting. This method primarily focuses on masking
transient faults. Depending on the fault-model for the application, it can be
possible that the voter processes fail. In order to decrease the chance of this
happening it is possible to increase the number of voters [16].
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Fig. 9. N-modular redundancy

If a minority of the computa-
tional processes have faults, a major-
ity vote will still result in the correct
answer. Triple modular redundancy
(TMR) [17, 13, 15] is a special case of
NMR in which n is minimally chosen
such that the computation does not
have to be repeated (when a single
fault is present). Since we can’t know
which process is likely to be faulty
in case n = 2. However, this double-
modular redundancy method has uses
as an error detection method since it
can be used to detect transient er-
rors. Figure 9 illustrates N-modular
redundancy with a pipeline consisting
of two stages of components followed
by voting processes. NMR is a mech-

anism that deals with transient faults without employing low level (hardware)
error detection techniques. Furthermore, NMR is a time-predictable method,
i.e., it is suitable for use in real-time systems [18]. Figure 10 shows the defaults
of the N-modular redundancy. We support the following options:

– replicas (line 6), integer signifying the number of replicas. Default is 3,
meaning a TMR setup.

– votingReplicas (line 7), integer signifying whether and how much the voting
processes need to be replicated.

– waitingTime (line 8), how long processes should wait before initiating the
voting process. Given as a percentage of the average execution time of the
finished components, the percentage can be higher than 100%.

– waitingStart (line 9), defines the starting point of waiting. When waitingStart
(cont.) is majority, processes start waiting based on the execution time when
a majority of processes are done. In the case of single, the waiting will start
when a single process is ready.

– waitingJoin (line 10), boolean defining whether processes that are finished
later should be added in the waitingTime calculation. Can apply on both a
waitingStart value of majority and single.

4.4 N-version programming

In N-version programming (NVP) multiple functional equivalent implementa-
tions of the same component are created [19]. At runtime, they can be run in
the same way as when using N-modular redundancy. The advantage of NVP
over NMR is that software faults present in one implementation are caught the
same way as transient hardware faults are caught.
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Decision {
inports {frame frameData; int dist}
outports {int voltage}
nModular {

replicas 3
votingReplicas 2
waitingTime 30
waitingStart majority
waitingJoin true

} }

Fig. 10. Default options for N-modular redundancy

The disadvantage of NVP is that it combines high runtime overhead with
additional development cost. However, TeamPlay already supports the concept
of multi-version components. What has primarily been intended to exploit dif-
ferent energy/time/security trade-offs, can now be reused for fault-tolerance. By
leveraging our existing version mechanic, the programmer can kill two birds with
one stone by reusing existing versions for NVP.

The options we support in NVP are similar to N-modular redundancy (Sec-
tion 4.3) adding an option to specify versions, which defines which versions
should be used and how many of each of these versions should be run. This is
ilustrated in Figure 11.

components {
Encryption {

inports {frame original}
outports {frame encrypted}
version Encryption1 {security 4}
version Encryption2 {security 6}
version Encryption3 {security 9}
nVersion {

versions [ (Encryption1 , 2) (Encryption2 , 1) ]
} } }

Fig. 11. Example of versions. The first entry in the tuple specifies the version while
the second specifies how many replicas of that version should exist. Not all versions
have to be specified because the default value is 0.

5 Fault-tolerant runtime system

In order to support the various TeamPlay language extensions specifically geared
at fault-tolerance we designed and implemented a corresponding fault-tolerant
runtime environment that dynamically reconfigures running applications upon
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detection of hardware failures. This runtime environment targets both perma-
nent faults as well as transient faults. The runtime environment comes with a
fault injection facility for demonstration purposes.

5.1 Base system

The coordination approach we take requires us to make as few assumptions as
possible about the underlying target hardware configuration as our coordination
approach aims to be hardware architecture agnostic. We assume that the main
property of CPS(oS) holds: CPS(oS) are distributed (possibly heterogeneous)
systems which are not necessarily in the same physical location [1]. This means
we deal with nodes of hardware components. We simulate these distributed sys-
tems using a thread for each node with PThreads.

One of the first decisions we need to make is: in what way do threads in
the simulator correspond to the real world? A straightforward idea is that each
coordination component corresponds with a thread. This has the advantage that
it is not necessary to manage the threads separately. Since the coordination task
graph is static, each component knows which thread to communicate their out-
put data to. In other exogenous streaming coordination systems like S-Net [20]
(which targets HPC systems), having components correspond with threads is
feasible. But when constructing a simulator for a CPS(oS) it is not realistic to
assume that there are always sufficient hardware components to accommodate
each coordination component separately. Hence we choose for an architecture
in which the number of computation threads is static, related to the number of
hardware components in the CPS(oS) but unrelated to the number of coordina-
tion components. This requires us to work with task queues, as each thread can
execute multiple components.

We choose for a design in which there are two types of threads, a main or
control thread and multiple computation threads. This design is illustrated in
Figure 12. The control thread checks whether components are ready and puts
the tasks into their appropriate queues. It is activated as soon as a component
has finished computing and matches a centralised hardware component in a real
world architecture. The choice for a centralised system is motivated by security
concerns as it makes it more difficult to disrupt the entire system by taking
control of a single computation node. In reality, this centralised system will have
to be hardened against security faults. In order to deal with faults in this man-
agement hardware component, fault-tolerance methods such as primary-backup
or n-modular redundancy can be applied. The computation threads mirror the
hardware components running the actual coordination component code from the
real world.

5.2 Thread interaction

The interaction between the control thread and computation threads is displayed
in Figure 13. The blue block on the left and green on the right indicate whether
the action takes place in the worker threads or in the control thread. In the
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Fig. 12. Illustration of the base architecture of the simulator. The management compo-
nent is simulated with the use of a control thread. The heterogeneous worker elements
are simulated by n computation threads.

figure we show only one worker thread to highlight the interaction with the con-
trol thread. The figures in the middle show the shared data structures between
the control and computation threads. The top data structure is the task queue
associated with the thread. The middle figure is the coordination structure con-
taining the coordination task graph. The bottom structure is the finished list
which is used to communicate that a thread is finished and tokens are added to
the buffers. The tables in the figure show the first four iterations on the simple
coordination structure in the middle.

When the control thread launches (top right node), it goes through the source
nodes and adds them to the task queues of the assigned threads. Each of these
threads has a counting semaphore which corresponds to the number of items in
their queue. When the semaphore reaches zero, the threads wait until new items
appear in the task queue.

When a thread is alerted that new items appeared in the task queue (top data
structure), it pops a component from the task queue (task queues are FIFO) to
execute. After execution, it stores the output data in the graph data-structure
and appends the id of the executed component into the finished list. The control
thread is alerted that components are finished, so it can check whether new items
can be added to the task queues. The computing thread will then wait for the
task queue semaphore. If the semaphore’s value higher than zero it can continue
popping another item from the task queue to start computing again.

After items are added to the task queues of the threads and the threads are
alerted, the management thread will wait until items appear in the finished list.
This is indicated in the figure by the bottom data structure with the dotted line
facing right. This mechanism is implemented with a condition variable as one
cannot reset a counting semaphore when the finished list is emptied. When items
appear in the finished list, we need to check which components can fire again.
First, we need to check whether the predecessors of the finished component can
fire since, by firing, it can have opened a spot in the (bounded) FIFO buffers
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of the predecessors. Then, we check whether the successors of this component
can fire since it has produced a token on its outports which may trigger the
firing rule of the successor. Finally, we check whether the component itself can
fire again. This way of checking ensures we only have to traverse the parts of
the graph that have been changed. The components that can fire are added to
the task queues belonging to the threads and the threads are alerted so they
can continue computing. The components that are ready are added to the task
queue. This marks the completion of a cycle.

Now we will explain the example found in the figure. First, both threads will
launch. The worker thread sees that there are no items in the task queue (i.e.,
semaphore value is zero) so it will wait. In the first cycle, the control thread
adds the Source component to the task queue. As the source component does
not have any dependencies, it can fire as long as the buffers can hold the data
and it is not already present in any task queue. The task is put in the task queue
associated with the computing thread to which Source is assigned. The control
thread will increment the semaphore. This leads to the awakening of the worker
thread, which will pop Source from the FIFO queue. The worker thread will
then execute the code associated with Source component. After computation,
the output token of Source will be added to the buffer on the edge leading to the
next component, A. The computing thread puts the id of the Source component
into the finished list and sends a signal to the condition variable on which the
control thread is waiting. The computing thread loops back to the first item
(after initialisation) and will wait until the control thread has added new items
to the task queue owned by the worker thread.

When the control thread receives the signal for the condition variable, it will
loop trough the finished list and check the task graph for components which
are ready. This is done by looping trough the predecessors, successors and the
component itself, to see if they can fire. Sink has no predecessors but it does
have one successor, A, which can fire since Source just fired. Source can also
fire again. The components which can fire again are put into the task queue.
Next, component A is fired, the result is again stored in the buffer after the fired
component, this time leading to Sink. Then the control thread is again alerted
that the worker thread has finished a computation. The control thread notices
that Source can be fired since it has no dependencies, but it is already in a
task queue, so it cannot be added again. Following the execution of A, Sink can
be fired, but A has insufficient tokens from Source to fire again. Now, Source is
taken from the task queue and executed, as it was added the previous cycle.
The component checking process of this cycle is identical to the first cycle, as
Source and A are added again. Then for the last round explained in this example,
Sink will be popped from the task queue and executed. In the control thread, A
cannot be added to the task queue again since it was already added when Source
finished. Sink cannot fire again since the buffer on the edge coming from A does
not have sufficient tokens.
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Fig. 13. Schematic overview of the interaction between the computation components
and the management component. The dotted lines indicate a waiting process via thread
communication (e.g., condition variable or semaphore). The double-column tables show
the components in the list per iteration. The triple-column tables show the components
which are checked for firing, the third column shows whether they are added to the
task queue.

5.3 Configuration file

Our simulation run-time uses a configuration file in which the user can specify
options such as the number of threads and options related to fault-tolerance. Fig-
ure 14 shows an example of a configuration file. numThreads signifies the number
of computation threads. Setting debug to true turns on debug prints. sleepTime
is the period of the heartbeat worker threads in microseconds. controlSleep
is the period of the heartbeat control thread in microseconds. heartbeatTries
(cont.) is the threshold of the counter incremented by the heartbeat control
thread, if the counter is higher than heartbeatTries, it is deemed to have crashed.
heartbeatCheckerPrio and heartbeatWorkerPrio are the real-time scheduling pri-
ority of the control heartbeat thread and heartbeat worker threads respectively.
Setting standbyEarlyTaskCompletion to true allows standby threads which start
computation after the primary thread (i.e., first finished thread) has finished to
skip computing since the task is already delivered. The edgeBufferSize indicates
the number of tokens an edge buffer can hold.
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numThreads = 6
debug = false
sleepTime = 100
controlSleep = 1000
heartbeatTries = 10
heartbeatCheckerPrio = 10
heartbeatWorkerPrio = 15
standbyEarlyTaskCompletion = false
edgeBufferSize = 20

Fig. 14. Simulator configuration file example.

5.4 Checkpoint/restart

Checkpoint/restart can be implemented in the coordination language by check-
pointing the FIFO buffers on the edges between the components, as the state of
the entire application resides in these buffers. This is done in practice by adding
an extra buffer on each outport that leads to a component. After the execu-
tion of the previous components, (i.e., the dependency components), copies of
the output tokens ares made. For primitive types, this is an easy task but for
user-defined types for which only a pointer is passed, the user needs to provide a
copy function. When the thread executing the component fails, a new structure
of input tokens is created from the checkpointed buffer and assigned to the task
which takes place during the rejuvenation phase. The entire rejuvenation pro-
cess, in which checkpoint/restart plays a role, is illustrated in Figure 15. We will
visit this figure in full during the rejuvenation section. In normal operation, we
need to remove the checkpointed data upon finishing execution and delivering
the output, in order to prevent the buffers from overflowing.

5.5 Primary-backup

In primary-backup, a standby component takes over the main component when
a failure is detected. Usually, this is done directly as the backup component syn-
chronises with the active component to ensure a quick switch. In our coordination
language, we do not need this behaviour as, again, the state of the application
is completely saved in the FIFO buffers. We assign copies of the input tokens
of the component to a number of threads equal to the number of replicas. The
first thread that finishes the computation actually delivers the output. If a thread
starts the computation after another thread has already delivered its answer, the
thread starting the second computation can skip the task. However, it is unlikely
that this behaviour is schedulable on real-time systems. Thus, we build an option
into the simulator whether this form of task completion is allowed. Disabling this
setting gives us the worst case, all threads compute even if the task is already
delivered. When this setting is enabled, the task will only be computed multiple
times if the backup threads start the computations while the thread that will
finish the earliest has not yet finished. Again, the primary-backup rejuvenation
process is illustrated in Figure 15.
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5.6 N-version programming & N-modular redundancy

N-modular redundancy requires more control over the processes compared to
primary-backup since NMR utilises a voting process at the end. What we can
use from the primary-backup system, is that these processes do not have to
execute at the same time. When all processes are done or when one of the
threads executing the processes has crashed or sustained a timeout conform the
coordination settings, the voting process is executed on a designated voter node.
This voter node requires a copy of all output tokens in order to execute the
majority voting process. Our application requires that the output of NMR is a
single answer, since the next component may not have NMR specified. This is
why we cannot have a voter array without having an extra voting step afterwards
to choose one correct answer from the voter replicas.

5.7 Component assignments & heterogeneous architectures

In order to support heterogeneous rejuvenation, we present an extension to the
base system. Before we can create the rejuvenation mechanism we need to know
which thread can be reconfigured to do which tasks. In time-critical systems,
TeamPlay components are assigned to a hardware component in both the time
and space dimensions. As the timing dimension is out of the scope of this work,
we introduce a spatial assignment of the components to threads. This way, the
system provides the minimum to test rejuvenation mechanisms for our fault-
tolerance methods.

We further introduce the concept of a thread class. This class mirrors a
specific hardware architecture (as threads mirror hardware components) in het-
erogeneous systems. When a component needs to be reconfigured because it has
crashed, it needs to be assigned to a component of the same class to ensure com-
patibility. The mapping of components to threads are passed to the simulation
run-time. It is not embedded in the coordination language as the number and
types of threads are hardware architecture-specific.

5.8 Rejuvenation

Strategies that deal with crash faults, checkpoint/restart and primary-backup
require this mechanism as it is not guaranteed that crashed nodes operate nor-
mally when restarted. In our runtime architecture a hardware component is
mimicked by two threads, a computation thread and a heartbeat thread. These
hardware components form a group of heterogeneous workers, managed by the
management component. The management component consists of two threads.
The control thread checks and adds components to the task queue of the worker
threads. The main heartbeat thread monitors the heartbeat threads associated
with the workers and launch the rejuvenation process.

The rejuvenation process is illustrated in Figure 15. The process can be split
into two parts: the invalidation and recovery of the task queue of the crashed
thread and the reassignment of the threads’ assigned components. The path of
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Fig. 15. Illustration of a crashed thread rejuvenation mechanism.

the rejuvenation process depends on which fault-tolerance mechanisms are spec-
ified. First, we explain the middle path which is taken when no fault-tolerance
method is specified on the component. On this path, error tokens are produced
on the outports of the components in the task queue. The component is marked
as finished as the computation could not be saved by a fault-tolerance method.
Then we arrive at the rejuvenation process. This rejuvenation process works by
finding a non-crashed thread in the same architecture class with as extra condi-
tion that it is the thread with the fewest assigned components, to prevent from
one thread taking all crashed tasks, consequently becoming a bottleneck for the
application. We do not produce error tokens if a source component is present in
the task queue of the crashed thread as it can simply fire again since it does not
have any input tokens that need to be invalidated.
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6 Conclusions

In cyber-physical systems, there is still a lot to be done in the area of creating
tools, frameworks, and languages to aid the programmer in processes related
to software evolution like creating and maintaining [2, ?,?]. We have taken the
first steps towards facilitating separation of concerns between computation and
coordination code, thus creating the opportunity to manage non-functional prop-
erties like fault-tolerance separately from computation code.

In this work, we have extended the TeamPlay coordination language [5] by a
number of fault-tolerance methods that provide fine-grained control over various
forms of replication from N-modular redundancy to multi-version programming.
Furthermore, we have devised a fully-fledged rutime environment that seamlessly
runs TeamPlay coordination code with the specified fault-tolerance.

We are currently pursuing two directions of research. First, we plan to in-
tegrate the fault-tolerance extensions of TeamPlay as described in this paper
with the time- and energy-aware heterogeneous multi-core scheduling techniques
that we have developed over recent years [21–23]. Second, we work on statisti-
cal methods to quantify the impact of fault-tolerance techniques on the system
reliability in the presence of single-event upsets [24, 25]. Here, we particularly
address weakly-hard real-time systems, where components are permitted to fail
a bounded number of times in a gliding average before disaster strikes [26].
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Self-Active Objects: A Unifying Approach towards Structured Concurrency 
 
Jürg Gutknecht, Prof. em. ETH Zürich, September 7, 2023 

Abstract 

While the development of software models from sequences of machine instructions operating on a 
uniform linear address space all the way up to structured data and metaphoric worlds of classes and 
objects supported by sophisticated runtime mechanisms such as automatic garbage collection is truly 
impressive, parallelism in programming languages has largely been treated stepmotherly. 

Programmers occasionally writing concurrent software still need to rely on theoretic and historic 
concurrency models dealing with “critical sections”, “race conditions”, “semaphores” [1], 
“communication channels [2] and the like, or some workarounds badly compatible with modern 
programming styles. This is particularly relevant in view of multicore and manycore processing 
hardware now all around when concurrency is becoming the norm and real in contrast with just 
exceptional and simulated. We argue in favor of amalgamating concurrency with modern 
programming by changing the paradigm from “code operating on data” towards “data becoming self-
active and operating on the environment”. Our final concern is converting concurrency from explicit 
to implicit in programming. The obvious price to pay for such a metaphoric integration of 
concurrency on the level of the programming model and language is a substantial extension of the 
runtime support behind the scenes. 

Embarrassingly Parallel Processing  

Let us take a simple but archetypal example of an iteration through a number of mutually 
independent computations. The problem is to use a Monte Carlo simulation for computing an 
approximation to p, something like this:  

MonteCarlo(int n) { 
  double count = 0;  
  for(i = 0; i < n; i++) { 
    x = randr(-1, 1); 
    y = randr(-1, 1); 
    if (x*x + y*y <= 1) count++; 
  } 
  return count; 
} 

Obviously, random points can be generated in any order without compromising the correctness of 
the result. Considering the computational effort in the body of the for statement and the availability 
of multiple cores, a parallel version is surely the preferred option here. 

Now, how would such a parallel version of the MonteCarlo algorithm look like when expressed in 
terms of tools typically available today? Obviously, the very first idea is to simply replace the for 
statement with some parallel counterpart like parfor, indicating that its body may be executed in 
parallel. However, this does not work because count is a “shared variable”, shared among all running 
instances of the body of the loop, meaning that care must be exercised to protect it from “race 
conditions”. A race condition would occur, if count++ would be called simultaneously by several 
bodies in the loop. Using a symbolic magnifier glass the following sequence of atomic actions could 
result: 

body 1 loads the value of count into its accumulator 
body 1 adds 1 to its accumulator 
body 2 loads the value of count into its accumulator 
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body 2 adds 1 to its accumulator 
body 1 stores the result to count 
body 2 stores the result to count 

Obviously wrong! What would be needed to remedy the situation in this and all other such cases is 
called “mutual exclusion” of modifying accesses to shared variables. Furthermore, apart from race 
conditions impairing the correctness, differentiating between shared and non-shared variables is of 
importance from an efficiency perspective: non-shared variables may remain in accumulators local to 
the executing hardware core in contrast to shared variables that must be shipped across different 
cores, a much more costly operation. 

An option to tag variables as shared, or even let the compiler find out variable-sharing all by itself 
might help. However, the question “shared among what” would come up immediately, and finding 
the answer by merely looking at an otherwise unstructured code image might not be possible at all. 

Unfortunately, all this leads to an implementation of the parallel version of MonteCarlo along the 
lines of an explicit master/slave paradigm, thereby exhibiting ample artificial complexity that is 
clearly out of the skills of many not to say of most programmers : 
 
Master(n) { 
  BroadcastToSlaves(n/nofCores); 
  masterCount = 0; 
  for (i = 0; i < nofCores; i++) { 
    Receive(count); 
    masterCount += count; 
  } 
  return 4 * masterCount/n; 
} 
Slave(n) { 
  myCount = MonteCarlo(n); 
  Send(myCount, 0); 
} 

Admittedly, there is a hard core of complexity inherent in parallel computing that cannot be 
abstracted away but the aim of language designers and runtime developers should certainly be to 
move as much of it “behind the scenes”. 

Our approach towards this aim is equally straightforward as it is generic: changing perspective. It 
is a paradigm shift from an imperative view of “operations operating on data op(data)” towards 
metaphorically “data acting on environment”. Note that the term “data” is used here as a collective 
term for any kind of data, be it elementary (such as int or float), structured (such as sets, arrays, 
matrices, vectors, dictionaries etc.) or any other kind of objects. However, with the aim of unification 
we will express all our “active data” as objects in an object-oriented Java-like language. 

In addition to the conventional sections of objects such as local data, constructor, and methods 
we add a section act { … } declaring the object’s action, to be run as a separate thread (typically 
mapped onto a separate processing core by the runtime system) from beginning to the end without 
interruption. Regarding inheritance, act-sections are treated the same way as methods. In particular, 
they may be overwritten in extending classes. 

Coming back to the MonteCarlo example, a parallel version on the basis of active data would look like 
this: 
 
public class Sample {  
  int x, y; 
  int act { // run as a separate thread 
    x, y = randr(-1, 1), randr(-1, 1); 
    if (x*x + y*y <= 1) return 1: else return 0; 
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} 
 
S := set(Sample() for (int i = 0; i < n; i++)); //create and activate 
nofInCircle := 0; 
for (S, s) { nofInCircle += s; } 
pi = 4 * nofInCircle / n; 

You may ask what behind the scenes of randr(-1, 1) is and what its influence on concurrency is both 
from a correctness and from an efficiency point of view. We will come back to general method calls 
by self-activities later but for now just imagine that the call of randr simply means atomically picking 
up a random value that has been prepared by some magic demon. 

Another, caricaturally simple example of an embarrassingly parallel style just for the purpose of 
illustrating the paradigm would be a concurrent version of computing the norm of a vector. Here, we 
obviously count on a “smart” runtime support optimizing matters as much as at all possible. 
 
public class Square {  
  float x; 
  Square(x0) { x = x0; } // constructor 
  float act { // running as a separate (micro)thread; 
    return x * x 
  } 
} 

D = vector(Square(a[i]) for (int i = 0; i < N; i++)); 
sum := 0; 
for (D, d): sum += d; 
norm := sqrt(sum); 

In both of these examples we assume that a comprehensive set constructor is available that creates a 
set or vector of objects for the given range. 

Synchronizing Parallel Processing 

As we saw in the Monte-Carlo example with randr, self-activities in objects may themselves call 
methods. Obviously, there is a need to guarantee mutual exclusion within “critical sections” in such 
cases. As our effort is raising the level of abstraction with concurrent programming and 
amalgamating it with the object-oriented model, we simply map critical sections to method 
implementations and decorate these methods with a synchronized keyword. 

Using the archetypal example of banking transactions for the purpose of illustration and 
modelling a corporate account with access by multiple users, we get the following code: 
 
public class User { // class of self-active objects 
  Account acc; 

  User(Account a) { acc = a; } // constructor 
 
  void act { // run as separate thread 
    while true { 
      // earn salary 
      acc.Deposit(salary) 
      // spot goods 
      cash = acc.Withdraw(price) ; 
      // buy goods for cash } 
    } 
  } 
} 
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public class Account { // class of passive objects 
  int bal; 

  Account(int cash) { bal = cash; } // initializer 

  public synchronized Deposit(int amount) { // synchronizing across object 
    bal := bal + amount; 
  } 

  public synchronized int Withdraw(int amount) { 
    if bal < amount then amount := bal; 
    bal := bal - amount; 
    return amount; 
  } 
} 

Notice that synchronization extends across the entire object. In other words, the entire set of 
synchronized methods within the object runs under mutual exclusion. In particular, self-activities in 
objects need to access critical sections in the same object via explicit method call. 

Just for the purpose of illustration: if the Withdraw method would not run synchronously under 
mutual exclusion the door for the famous double-spending problem would be wide open: Assuming 
an initial balance of $30’000.- and two users A and B each of them trying to withdraw $25’000.- from 
the account. Then, if fate wants it to happen: 

1) A tries to withdraw $25’000.-: the Withdraw method computes bal – amount and returns 
$25’000.- 

2) At roughly the same time and before the method has updated the bal variable, B also tries to 
withdraw $25’000.-:  the Withdraw method again computes bal - amount, returns $25’000.- and 
leaves a final balance of $5’000.-. 

Let us challenge our approach by another example typically to be found in textbooks on concurrent 
programming. The problem is to develop a concurrent program that reads lines from some input file, 
processes each of them individually, and writes the results to an output file. 

public class inFile { 
  File f; 

  public inFile(name) { f = openFile(name); } 
  public synchronized line read() { … // read line from f } 

} 

public class outFile { // synchronizing object 
  File f; 

  public outFile(name) { f = openFile(name); } 
  public synchronized write(result) { … // write result to f } 

} 

public class Line { // class of self-active objects 
  String line; 
  int res; 

  void act { 
    line = myInFile.read() 
    … // process line and compute result 
    myOutFile.write(res); 
  } 

} 
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public class main { // main program is an active object too 

  public main { 
    myInFile, myOutFile = new inFile(…), new outFile(…); 
    for i in maxLines { new Line(); } 
  } 

} 

Our last example finally demonstrates how an elegant concurrent version of an originally sequential 
algorithm can be achieved via clever fabrication of the participating self-active objects . It is a 
concurrent version of the Bellman-Ford algorithm for finding the nearest distances from any given 
ground-zero node to all other nodes in some weighted graph. According to Wikipedia Bellman-Ford-
Algorithmus – Wikipedia and assuming that E denotes the set of all edges in the graph, e.start, e.end 
and e.weight the starting node, ending node and weight respectively of edge e, d[v] the distance of 
node v from the ground-zero node number 0, pred the predecessor for any given node and n the 
number of vertices, the core of the algorithm reads like this: 

for (i := 1, i < n, i++) { 
    for (E, e) { // all edges 
      if d[e.start] + e.weight < d[e.end] { 
        d[e.end] := d[e.start] + e.weight; 
        pred[e.end] := e.start 

The question arises if the inner for-loop qualifies for concurrency. Obviously, pred and d are “shared 
variables” that have to be protected from “race conditions”. 

The answer is “yes” but to make our approach work we need to reshuffle the for-loop by focusing on 
pred and mapping it to an array of self-active objects, something like this: 

public class Pred { // predecessor class 
  int me; 
  public Pred(v) { me := v; } // initializer 
  public void act { // behavior (re)activateable explicitly 
    for (E, e) { 
      if e.end = me { // my predecessor 
        if d[e.start] + e.weight < d[e.end] { 
          d[e.end] := d[e.start] + e.weight; 
          pred[e.end] := e.start; 
        } 
      } 
    } 
  } 
}         
  
for (V, v): pred[v] := new Pred(v); // just create self-active objects 
for (i := 1, i < n, i++) { 
  for (V, v) { act pred[v] // activate or reactivate the object } 
} 

Conclusion 

On the background of the availability of modern multicore hardware we argue that the support for 
concurrency in mainstream programming languages and runtime support systems is lagging behind 
both the hardware development and the general conceptual progression of programming paradigms. 
Concurrency support in mainstream languages both on the levels of « embarrassingly parallel » and 
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«lightweight concurrency» is either missing or trying to mimic some classical theoretical model from 
the 70s of the previous century, with mixed results mainly in terms of programmer-friendliness. 

As a possible remedy for both levels “embarrassingly parallel code” and “objects and threads” we 
suggest shifting the paradigm from data and objects being operated on by some “remote” piece of 
code towards data and objects becoming self-active and taking full control of their entire life cycle, 
with the immediate benefit of disappearing unstructured “race conditions”. Obviously though for this 
model to fly additional support from all levels programming language, compiler and runtime support 
will be unavoidable. 
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Abstract. Unintended failures during a computation are painful but
frequent during software development. Failures due to external reasons
(e.g., missing files, no permissions) can be caught by exception handlers.
Programming failures, such as calling a partially defined operation with
unintended arguments, are often not caught due to the assumption that
the software is correct. This paper presents an approach to verify such
assumptions. For this purpose, non-failure conditions for operations are
inferred and then checked in all uses of partially defined operations. In
the positive case, the absence of such failures is ensured. In the negative
case, the programmer could adapt the program to handle possibly failing
situations and check the program again. Our method is fully automatic
and can be applied to larger declarative programs. The results of an
implementation for functional logic Curry programs are presented.

1 Introduction

The occurrence of failures during a program execution is painful but still frequent
when developing software systems. The two main reasons for such failures are

– external, i.e., outside the control of the program, like missing files or access
rights, unexpected formats of external data, etc.

– internal, i.e., programming errors like calling a partially defined operation
with unintended arguments.

External failures can be caught by exception handlers to avoid a crash of the
entire software system. Internal failures are often not caught since they should
not occur in a correct software system. However, in practice, they occur during
software development and even in deployed systems which results in expensive
debugging tasks. For instance, in imperative programs a typical internal failure
is dereferencing a pointer variable whose current value is the null pointer (due to
this often occurring failure, Tony Hoare called the introduction of null pointers
his “billion dollare mistake”1).

1 http://qconlondon.com/london-2009/speaker/Tony+Hoare
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Although null pointer failures cannot occur in declarative programs, they
might contain other typical programming errors, like failures due to incom-
plete pattern matching. For instance, consider the following operations (shown
in Haskell syntax) which compute the first element and the tail of a list:
head :: [a] → a tail :: [a] → a
head (x:xs) = x tail (x:xs) = xs

In a correct program, it must be ensured that head and tail are not evaluated
on empty lists. If we are not sure about the data provided at run time, we can
check the arguments of partial operations before the application. For instance,
the following code snipped defines an operation to read a command together
with some arguments from standard input (the operation words breaks a string
into a list of words separated by white spaces):
readCommand = do

putStr "Input a command:"
s <- getLine
let ws = words s
case null ws of True → readCommand

False → processCommand (head ws) (tail ws)

By using the predicate null to check the emptiness of a list, it is ensured head
and tail are not applied to an empty list in the False branch of the case.

In this work we present a fully automatic tool which can verify the non-failure
of this program. Our technique is based on analyzing the types of arguments and
results of operations in order to ensure that partially defined operations are called
with arguments of appropriate types. The principle idea to use type information
for this purpose is not new. For instance, with dependent types, as in Agda
[8], Coq [1], or Idris [2], or refinement types, as in LiquidHaskell [10,11], one can
express restrictions on arguments of operations. Since one has to prove that these
restrictions hold during the construction of programs, the development of such
programs becomes harder [9]. Another alternative, proposed in [4], is to annotate
operations with non-fail conditions and verify that these conditions hold at each
call site by an external tool, e.g., an SMT solver [3]. In this way, the verification
is fully automatic but requires user-defined annotations and, in some cases, also
the verification of post-conditions or contracts to state properties about result
values of operations [5].

The main idea of this work is to infer the non-fail conditions of operations.
Since the inference of precise conditions is undecidable in general, we approx-
imate them by using abstract types which are finite representations of sets of
values. In particular, our methods performs the following steps:

1. We define a call type for each operation. If the actual arguments belong to
the call type, the operation is reducible with some rule.

2. We define in/out types for each operation which approximate the input/out-
put behavior of the operation.

3. For each call to an operation g occurring in a rule defining operation f , we
check, by considering the call structure and in/out types, whether the call
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type of g is satisfied. If this is not the case, the call type of f is refined and
we repeat the checks with the refined call type.

At the end of this process, each operation has some correct call type which
ensures that it does not fail on arguments belonging to its call type. Note that the
call type might be empty on always failing operations. To avoid such situations,
one can modify the program to encapsulate possibly failing computations so that
a different action can be taken in case of a failure.

To sketch an example application of our method, consider the example above.
Since in most cases declarative programs are defined by case distinctions on data
constructors, we use as abstract types the set of top-level data constructors,
where ⊤ denotes the set of all constructors. This domain is finite and can be
order by set inclusion. For instance, the abstract type {:} denotes all terms
having the list constructor “:” at the top, i.e., all non-empty lists. Therefore, the
call types of the operations head and tail can be characterized by the abstract
type {:}. This call type is easy to derive from the left-hand sides of the rules
defining head and tail. The call type states that, if the argument to head and
tail is a non-empty list, the application is reducible.

Next we approximate the input/output behavior of operations by in/out
types. These are basically disjunctions of abstract types for the input and the
associated output. For instance, the operation null is defined by
null :: [a] → Bool
null [] = True
null (_:_) = False

so that the in/out type of null is

{{[]} ↪→ {True}, {:} ↪→ {False}}

(where the disjunction is represented as a set). The in/out types can also be
computed from the structure of the program with a fixpoint computation for
recursive operations.

Now we want to verify the non-failure of readCommand. Since its definition
contains calls to the partially defined operations head and tail, we have to show
that the call types of these operations are satisfied at their call sites. This can
be deduced by analyzing the case expression

case null ws of True → readCommand
False → processCommand (head ws) (tail ws)

In the branch containing the calls to head and tail, we know that the result of
null ws is False. From the in/out type of null, we can infer that this is only the
case of the argument ws is a non-empty list. Thus, the call types of head and
tail are satisfied by the argument ws at the call site.

In order to make our approach accessible to various declarative languages, we
formulate and implement it in the declarative multi-paradigm language Curry
[7]. Since Curry extends Haskell by logic programming features and there are
also methods to transform logic programs into Curry programs [6], our approach
can also be applied to purely functional or logic programs. A consequence of
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using Curry is the fact that programs might compute with failures, i.e., it is
not an immediate programming error to apply head and tail to possibly empty
lists. However, subcomputations involving such possibly failing calls must be
encapsulated so that it can be checked if such a computation has no result (this
corresponds to exception handling in deterministic languages). If this is done,
one can ensure that the overall computation does not fail even in the presence
of encapsulated logic (non-deterministic) subcomputations.
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Abstract. MOSTflexiPL is a general-purpose programming language, whose

syntax can be freely extended and customized by every programmer. Based on a

small set of predefined operators, it is possible to define new operators with ar-

bitrary syntax, which do not only cover prefix, infix, and postfix operators, but

also control structures, type constructors, and declaration forms. The paper

gives an overview of major concepts of MOSTflexiPL in a tutorial-like manner

by giving numerous examples from everyday programming.

1 Introduction

MOSTflexiPL, which is an acronym for modular, statically typed, flexibly extensible

programming language, is a general-purpose programming language, whose syntax

can be freely extended and customized by every programmer. The logo used in the pa-

per title shall express the extreme flexibility provided by the language allowing even

fancy constructions unimaginable with conventional languages. (Therefore, it might

be advisable to forget almost all familiar and seemingly necessary limitations of other

languages to be able to fully recognize MOSTflexiPL’s capabilities.)

A basic principle enabling that flexibility is: Everything is an expression, i. e., the ap-

plication of an operator to subexpressions, where operators might possess any number

of names and operands in an arbitrary order. Apart from well-known prefix, infix, and

postfix operators, this also includes “circumfix” operators such as (•) (an operand

depicted by the bullet sign enclosed in parentheses), control structures such as if•
then•else•end, declaration forms such as •:• (a name and a type separated by a

colon), and so on. Another basic principle is, that the language provides only a small

set of predefined operators covering arithmetic and logic operations as well as basic

control structures, which can be used to define arbitrary new operators.

As the name indicates, the language is statically typed −− which imposes numerous

challenges with respect to the already mentioned flexibility −−, and it is currently im-

plemented by a compiler and a run-time system written in C++.

The primary goal of this paper is to give a broad overview of MOSTflexiPL’s major

concepts in a tutorial-like manner by showing numerous examples taken from every-
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day programming. The examples also demonstrate, that writing syntactic extensions

in MOSTflexiPL is just as easy as writing normal code, which is a significant differ-

ence and advantage over other approaches to syntactic extensibility.

2 Simple Operator Declarations

To giv e a first example, the following simple declarations define operators computing

the square and the absolute value, respectively, of an integer value x, which can after-

wards be applied using well-known mathematical syntax, e. g., 52
or |2−7|2

:

(x:int) "2" -> (int = x * x);
"|" (x:int) "|" -> (int = if x > 0 then x else -x end)

An operator declaration generally consists of a signature, an arrow and a result decla-

ration, where the signature is a sequence of names and parameter declarations, while

the result declaration consists of a type (the result type of the operator), an equality

sign, and the implementation of the operator, enclosed in parentheses. A name is ei-

ther a sequence of letters and digits starting with a letter (denoting exactly this se-

quence of characters) or a sequence of arbitrary characters enclosed in quotation

marks (denoting this sequence of characters without the quotation marks). A parame-

ter declaration consists of a name, a colon, and a type, enclosed in parentheses. Final-

ly, the implementation and the types mentioned above are −− according to the basic

principle mentioned in Sec. 1 −− expressions. (At the moment, types are atomic ex-

pressions such as int or bool, but see Sec. 4 and Sec. 7 for more complex type ex-

pressions.)

When an operator application such as |2−7|2
is evaluated at run time, the parameters

of the operator are initialized from left to right by recursively evaluating the corre-

sponding operands and then the value of the expression is determined by evaluating

the implementation of the operator.

In the examples above, the implementation of the square operator uses the predefined

multiplication operator •*•, while the implementation of the abs operator uses the

predefined change sign operator −• as well as the conditional operator if•then•
else•end that returns, according to the truth value of its first operand, either the val-

ue of its second or its third operand.

The semicolon used to separate the two operator declarations is a simple predefined

infix operator that evaluates its left and right operand and returns the value of the lat-

ter and therefore is typically used to denote sequential execution of subexpressions.

But −− again according to the basic principle mentioned in Sec. 1 −− since declarations

are expressions, too, the semicolon is also used to separate multiple declarations.

(Sec. 8 explains the precise meaning of the result value of an operator declaration.) In

contrast to many other programming languages, however, semicolon must not be used

at the end of a sequence of subexpressions, because it is an infix operator.

To giv e another example, the following declaration defines an operator that recur-

sively computes the factorial of an integer value n, which can also be applied using
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well-known mathematical syntax, e. g., 5! or 52!:

(n:int) "!" -> (int = if n <= 1 then 1 else (n-1)! * n end)

The particular challenge for the compiler with a declaration like this is to already rec-

ognize and accept the new syntax defined by the declaration inside of its own imple-

mentation to allow recursive applications of the operator.

MOSTflexiPL does not provide a predefined syntax for function declarations and ap-

plications, because any desired syntax is actually covered by the general operator dec-

laration syntax mentioned above. For example, the style used by many procedural lan-

guages with function applications of the form max(2, 3):

max "(" (x:int) "," (y:int) ")"
-> (int = if x > y then x else y end)

Or the syntax of functional languages such as Haskell with function applications of

the form max 2 3:

max (x:int) (y:int) -> (int = if x > y then x else y end)

Or even a more natural-language-like flavour with function applications of the form

max of 2 and 3:

max of (x:int) and (y:int)
-> (int = if x > y then x else y end)

3 Exclude Declarations

The predefined operators of MOSTflexiPL obey common rules for precedence and as-

sociativity, e. g., multiplication and division bind stronger than addition and subtrac-

tion, and all of them are left-associative. In contrast, user-defined operators have no

predefined precedence or associativity, which frequently leads to ambiguous expres-

sions. For example, the expression 2 + 32
might not only have the intended meaning

2 + (32), but could also be interpreted by the compiler as (2 + 3)2
(where the paren-

theses shall only indicate the different groupings).

Exclude declarations can be used to resolve such ambiguities by specifying interpreta-

tions of expressions which are not intended, i. e., excluded, for example:

excl (2 + 3)2 end

Here, 2 and 3 are arbitrary placeholders for integer operands. The effect of this decla-

ration is that applications of the operator •+• (the operator at the top of the parenthe-

sized subexpression) are excluded as operands of the operator •2
. Therefore, the ex-

pression 2 + 32
will now be unambiguously interpreted as the addition of 2 and the

square of 3, because the alternative interpretation as the square of the addition of 2
and 3 is now forbidden.

Because outside of exclude declarations, the predefined parentheses (•) are just a

normal operator (that simply returns the value of its operand), they can still be used

57



for explicit grouping: In the expression (2 + 3)2
with explicit parentheses around the

addition, the operand of the operator •2
is not an application of the operator •+•, but

rather an application of the operator (•) (whose operand is an application of the oper-

ator •+•), which is not forbidden.

In general, the expression between excl and end can contain any number of paren-

thesized subexpressions, each of which is interpreted as described above. Therefore,

the effect of the following exclude declaration is, that the square operator binds

stronger than all basic arithmetic operators:

excl (1 + 2)2; (1 - 2)2; (1 * 2)2; (1 / 2)2 end

To giv e another example, the following exclude declarations encode exactly the rules

for precedence and associativity of the basic arithmetic operators that have been men-

tioned at the beginning of this section:

excl (1+2)*(3+4); (1-2)*(3-4); (1+2)/(3+4); (1-2)/(3-4) end;
excl 1*(2*3); 1*(2/3); 1/(2*3); 1/(2/3) end;
excl 1+(2+3); 1+(2-3); 1-(2+3); 1-(2-3) end

4 Constants and Variables

A declaration of the form name : type = init declares a constant with the given

name and type whose value is obtained by evaluating the initializer expression init,

e. g., N : int = 52
. If the type is omitted, e. g., N := 52

, it is automatically deduced

from the type of the initializer. If the initializer is omitted, the constant receives a

unique new value that is different from every other value of the type. While this is of

limited usefulness for numeric types such as int, it is crucial for variable types de-

scribed below and for user-defined types described later in Sec. 6.

For any type T, the type T? denotes memory cells containing values of type T. There-

fore, a declaration such as x : T? defines x as a constant referring to a unique new

memory cell that contains a value of type T, i. e., x actually denotes variable with con-

tent type T. The current value contained in such a variable can be queried with the

prefix question mark operator ?•, and it can be changed with the assignment

operator •=!•. The initial value of a variable is nil, which is a predefined value for

any type that is different from every other value of the type. Because a variable with

content type T is itself a value of type T?, it might itself be stored in a variable of

type T??. If the content of such a variable is queried prior to any assignment to the va-

riable, the returned value is the nil value of type T?. If the content of this nil variable

is queried in turn, it will be the nil value of type T, and assigning any value to such a

nil variable has no effect. (This behaviour is roughly comparable to reading and writ-

ing the Unix special file /dev/null.)

By using variables and the predefined loop operator while•do•end, the factorial op-

erator mentioned in Sec. 2 can also be implemented in a more procedural style:
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(n:int) "!" -> (int =
f : int?; f =! 1;
i : int?; i =! 2;
while ?i <= n do

f =! ?f * ?i;
i =! ?i + 1

end;
?f

)

In the implementation of the operator, the variables f and i are declared and assigned

their initial values as described above, where i is used as a loop counter running

from 2 to n, while f accumulates the factorial value that is finally returned.

5 Optional, Alternative, and Repeatable Syntax Parts

To provide even more syntactic flexibility, the signature of an operator declaration

might also contain optional, alternative, and repeatable parts using well-known EBNF

syntax.

For example, the following declaration defines a variadic maximum operator that can

be applied to any number of operands, e. g., max of 1, max of 1 and 2, max of 1
and 2 and 3, and so on:

max of (x:int) { and (y:int) } -> (int =
m : int?; m =! x;
{ if y > ?m then m =! y end };
?m

)

According to EBNF, the curly brackets in the signature indicate that an application of

this operator might contain the word and followed by an operand corresponding to

the parameter y any number of times (zero or more). To access the different values of

this parameter in the implementation of the operator, a corresponding curly bracket

operator {•} is provided there, whose operand is repeatedly evaluated for every value

of y. For the particular application max of 1 and 2 and 3 this means, that the varia-

ble m declared in the implementation is initialized with the value of x (i. e., 1), and

then the if expression inside the curly brackets is evaluated in turn for y equal to 2
and to 3, changing the value of the variable m to 2 and to 3, respectively. Finally, the

resulting value of m is returned.

To giv e another example, the following operator performs arbitrary calculations con-

sisting of additions and subtractions, e. g., calc minus 1 plus 2 or calc 1 minus 2
plus 3:

calc [minus] (x:int) { (plus|minus) (y:int) } -> (int =
res : int?;
res =! [-x | x];
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{ res =! (?res + y | ?res - y) };
?res

)

In addition to the curly brackets denoting a repeatable part, the signature of this opera-

tor also contains square brackets denoting an optional part as well as round brackets

containing two or more alternative parts separated by vertical bars. To find out in the

implementation of the operator, whether the optional word minus after the word

calc is present or not in a particular application of the operator, a corresponding

square bracket operator [•|•] is provided, whose first or second operand, respec-

tively, is evaluated accordingly. Similarly, a round bracket operator (•|•) with two

operands corresponding to the round brackets with two alternatives in the signature is

provided, whose first or second operand is evaluated according to whether the first or

second alternative has been chosen in a particular application of the operator or −− be-

cause in this example the round brackets are nested inside the curly brackets −− in the

respective pass through the curly brackets. The result value of a square or round

bracket operator is the value of the operand that has been evaluated, while the result

value of a curly bracket operator is the number of passes through these brackets. Tak-

en together, these bracket operators allow the implementation of the operator to exact-

ly determine the structure a particular operator application and to process the values

of its operands in a rather concise manner.

Generally speaking, all three kinds of brackets can have any number of alternatives,

except that round brackets must contain at least two, because round brackets with just

one alternative are useless. Therefore, the corresponding bracket operators provided in

the implementation of the operator have a corresponding number of operands separat-

ed by vertical bars, where the i-th operand is evaluated if the i-th alternative has been

chosen in a particular operator application or pass through curly brackets. As an ex-

ception, an operator corresponding to square brackets has an additional optional

operand, that is evaluated (if it is present) if none of the alternatives has been chosen.

Therefore, the calc operator could also be defined as follows:

calc [minus] (x:int) { plus (y:int) | minus (z:int) } -> (int =
res : int?;
res =! [-x | x];
{ res =! ?res + y | res =! ?res - z };
?res

)

The different kinds of brackets can be used any number of times in an operator signa-

ture, and they can be arbitrarily nested to describe rather complex syntactic constructs,

for example:

dnf [na: not] (a:bool) { and [nb: not] (b:bool) }

{ or [nc: not] (c:bool) { and [nd: not] (d:bool) } } end
-> (bool =

res : bool?;
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res =! [na: ˜a | a];
{ res =! ?res & [nb: ˜b | b] };
{

tmp : bool?;
tmp =! [nc: ˜c | c];
{ tmp =! ?tmp & [nd: ˜d | d] };
res =! ?res | ?tmp

};
?res

)

This operator can be used to express arbitrary logic expressions in disjunctive normal

form (DNF), e. g., dnf x or not u and v and w or y and not z end, if u, . . ., z de-

note values of type bool. The predefined operators of MOSTflexiPL for logic opera-

tions used in the implementation of the dnf operator are ˜• for negation, •&• for con-

junction, and •|• for disjunction. To disambiguate the multiple square brackets in the

signature and their corresponding bracket operators in the implementation, they are la-

beled with unique names and a colon after the opening bracket. While the curly brack-

ets could be disambiguated in the same way, this is actually not necessary, because pa-

rameters defined inside of particular curly brackets are only visible in the operands of

the corresponding bracket operator. Therefore, the bracket operator used first in the

implementation must correspond to the first curly brackets in the signature, because

parameter b is only visible in the operator corresponding to these brackets. For the

same reason, the (outer) bracket operator used next in the implementation must corre-

spond to the second (outer) brackets in the signature (due to the visibility of

parameter c), while the bracket operator used inside of the former must correspond to

the inner brackets in the signature (due to the visibility of parameter d).

6 Static Operators and User-Defined Data Structures

As already mentioned in Sec. 2, a constant declaration name : type defines a con-

stant with the given name and type and a unique new value. Constants whose type is

the predefined meta-type type denote unique new types, e. g.:

Color : type

Afterwards, any number of unique values or “objects” of such a type can also be de-

fined as constants, e. g.:

red : Color;
blue : Color;
green : Color

As also mentioned in Sec. 2, constants of a variable type T? actually denote unique

variables with content type T.
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Additionaly, if the implementation of an operator (including the equality sign) is omit-

ted, a unique new value of the result type is returned whenever the implementation

would be evaluated.

If the arrow −> in an operator declaration is replaced by a double arrow =>, the de-

clared operator is a so-called static operator. In contrast to a normal operator defined

with a single arrow (that is also called a dynamic operator), a static operator has a

runtime memory to store the parameter and result values of all applications of the op-

erator performed so far. If the parameter values of a particular application are equal to

the corresponding values of an earlier application, the implementation of the operator

is not evaluated again, but the result value stored from the earlier application is re-

turned instead. Therefore, a static operator guarantees that applications to the same

parameter values always return the same value.

While this could be used to automatically optimize operators with runtime-intensive

implementations by means of memoization, this is in fact neither the primary goal nor

the typical use of static operators. Instead, they can be used as follows to flexibly de-

fine data structures:

Point : type;
(p:Point) "@" x => (int?);
(p:Point) "@" y => (int?);

p1 : Point; p1@x =! 1; p1@y =! 2;
p2 : Point; p2@x =! 3; p2@y =! 4;

dx := ?p1@x - ?p2@x;
dy := ?p1@y - ?p2@y

According to the semantics of static operators and omitted operator implementations

described above, the operator •@x (and likewise the operator •@y) guarantees, that ap-

plications to the same point object always return the same int variable, while appli-

cations to different point objects return different variables (that are also different from

all other existing variables). Therefore, the variables returned by p1@x and p1@y can

be used to store the x and y coordinates of p1, while the variables returned by p2@x
and p2@y can be used to store the coordinates of p2. Therefore, the constants dx and

dy defined at the end of the example denote the difference of the x and y coordinates,

respectively, of the points p1 and p2 (i. e., both have the value −2).

Because it is always possible to add further operators like •@x and •@y later on, i. e.,

to modularly extend a type such as Point with new “attributes,” these types are called

open types [5]. Furthermore, it is possible that different objects of a type possess val-

ues for different subsets of attributes. According to the semantics of variables de-

scribed in Sec. 4, querying the value of a missing attribute of an object simply returns

nil.
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7 Generic Operators

If an optional parameter appears in the type of another parameter of the same opera-

tor, its value can be automatically deduced from the type of the operand correspond-

ing to the other parameter, and therefore, the former parameter is called a deducible

parameter. This can be used to define generic operators similar to C++ templates and

Java generics, for example:

[(T:type)] (x:T?) "<->" (y:T?) -> (T? =
z := ?x; x =! ?y; y =! z; y

);

excl u : int?; u <-> (u <-> u) end;

v1 : int?; v1 =! 1;
v2 : int?; v2 =! 2;
v1 <-> v2

Because v1 and v2 both have type int?, v1 <−> v2 is a correct application of the

previously defined swap operator, where the parameters x and y are initialized with

the explicit operands v1 and v2, respectively, while the optional parameter T is im-

plicitly initialized with the type int causing the type int? of the operands v1 and v2
to match the type T? of the corresponding parameters x and y. The implementation of

this operator swaps the values contained in the variables x and y and returns the varia-

ble y. (The latter enables concatenated applications of the operator to a sequence of

variables, e. g., v1 <−> v2 <−> v3, actually performing a leftward rotation of their

values. To disambiguate expressions like that, the exclude declaration is necessary

which makes the operator left-associative.)

Generic operators can also be used to generalize the idea of open types and attributes

already introduced in Sec. 6:

(U:type) "-->" (V:type) => (type);
[(U:type) (V:type)] (u:U) "@" (a:U-->V) => (V?);

Point : type;
x : Point --> int;
y : Point --> int;

p1 : Point; p1@x =! 1; p1@y =! 2;
p2 : Point; p2@x =! 3; p2@y =! 4

For every pair of types U and V, U−−>V is a unique type intended to represent at-

tributes for type U with target type V. Therefore, the constants x and y represent at-

tributes for type Point with target type int. Furthermore, for every combination of

an object u of some type U and an attribute a for type U with some target type V, u@a
is a unique variable with content type V that can be used to store the value of

attribute a for object u. Therefore, expressions such as p1@x and p2@y have exactly
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the same meaning as in Sec. 6, but the definition of the attributes x and y is much

more convenient now if the operators •−−>• and •@• are provided by a library.

To make things even more convenient, another operator •.• can be defined to simpli-

fy the querying of attribute values by allowing to write, e. g., p1.x instead of ?p1@x:

[(U:type) (V:type)] (u:U) "." (a:U-->V) -> (V = ?u@a)

Furthermore, it is possible to define a more advanced generic operator to directly con-

struct objects of an open type with a set of initial attribute values:

(U:type) "(" [(V1:type)] (a1:U-->V1) "=" (v1:V1)
{ "," [(V2:type)] (a2:U-->V2) "=" (v2:V2) } ")" -> (U =

u : U;
u@a1 =! v1;
{ u@a2 =! v2 };
u

);

p1 := Point(x = 1, y = 2);
p2 := Point(x = 3, y = 4)

As a final improvement, the operator •@• can be redefined as follows to make it re-

turn nil instead of a unique new variable if either the object u or the attribute a is nil

(note that a constant declaration returns the value of the constant and an if expression

without an else part returns nil if the condition is not satisfied; the predefined opera-

tor •=/• tests for inequality):

[(U:type) (V:type)] (u:U) "@" (a:U-->V) => (V? =
if u =/ nil & a =/ nil then

v : V?
end

)

The effect of this modification is that querying an attribute value of a nil object or the

value of a nil attribute of any object always returns nil (because querying a nil variable

returns nil) and that modifying such attributes has no effect (because modifying a nil

variable has no effect). Without this modification, it would be possible to accidentally

assign a value to an attribute of a nil object, that would afterwards be returned by

querying this attribute of the nil object, for example:

Line : type;
beg : Line --> Point;
end : Line --> Point;

ln := Line(beg = Point(x = 1, y = 2));
ln.end@x =! 4;
ln.end.x

Because the Line object ln does not have a value for the attribute end, ln.end re-

turns a nil point, whose attribute x is then (formally) assigned the value 4. With the
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original definition of the operator •@• given at the beginning of this section,

ln.end@x would return a “real” variable that would store the assigned value 4.

Therefore, ln.end.x would return this value, which is illogical because the line ln
does not have a defined endpoint at all. With the modified definition of the operator

•@• given above, ln.end@x returns a nil variable causing the assignment of the

value 4 to have no effect, and therefore, ln.end.x also returns nil which is more log-

ical.

The above operators can also be used to define generic open types such as lists using a

Haskell-like syntax [|T|] to denote lists with element type T:

"[|" (T:type) "|]" => (type);
[(T:type)] head => ([|T|] --> T);
[(T:type)] tail => ([|T|] --> [|T|])

Note that the generic attributes head and tail are not defined as constants, because

constants cannot have any parameters and therefore cannot be generic, but rather as

static operators that return different values for different types T to make sure that list

types with different element types have logically different attributes.

Furthermore, head and tail are remarkable because the value of their type parame-

ter T cannot be deduced from their bare application (which is simply head or tail),

but only from the context of such an application, e. g.:

ls1 : [|int|]; ls1@head =! 1;
ls2 : [|bool|]; ls2@head =! true

Because (i) the type of ls1 is [|int|], (ii) the operand types of the operator •@•
must be U and U−−>V for suitable types U and V, and (iii) the type of head must be

[|T|]−−>T for some suitable type T, the type of head in the expression ls1@head is

uniquely deduced by the compiler as [|int|]−−>int by solving this “constraint

puzzle.” Likewise, the type of head in the expression ls2@head will be

[|bool|]−−>bool.

Using the above definitions, the “cons” operator for constructing a list from a head

element h and a tail list t can be defined as follows, again with a syntax •:• known

from Haskell:

[(T:type)] (h:T) ":" [(t:[|T|])] -> ([|T|] =
[|T|](head = h, tail = t)

);

excl (ls := 1) : end;

ls1 := 1 : 2 : 3 :;
ls2 := true : false :

As a convenient extension, the tail list can be omitted, because the parameter t is op-

tional and therefore is automatically nil if the corresponding operand is missing in an

application of the operator.
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Note that it is not necessary to explicitly make the operator •:• right-associative by

means of an exclude declaration, because an expression such as 1:2:3: can only be

interpreted as 1:(2:(3:)), because any other syntactically possible interpretation

(e. g., ((1:2):3):) would not be type-correct. And in fact, the MOSTflexiPL com-

piler −− in contrast to the compilers of many other programming languages −− does not

artificially separate the semantic analysis (i. e., type checking) from the syntactic anal-

ysis of the source code, but rather performs them together in close cooperation in or-

der to rule out expressions which are not type-correct as early as possible.

On the other hand, the exclude declaration contained in the example is necessary to

exclude an interpretation such as (ls1:=1):2:3:, which would in fact be type-

correct.

8 Implicit Parameters

Another useful example of generic operators would be a generic maximum operator

that can be applied to operands of any type T:

[(T:type)] max of (x:T) and (y:T) −> (T =
if x > y then x else y end

);

max of 1 and 2;
max of p1 and p2

While the application of this operator to the int values 1 and 2 appears reasonable,

its application to the points p1 and p2 does not make sense, because there is no opera-

tor •>• to compare points. And in fact, the compiler would already reject the above

declaration of the maximum operator and not only its application to points, because

there is no operator •>• that can be applied to the operands x and y of an arbitrary

type T whose precise value is not known there.

To make the compiler accept the operator declaration, it is necessary to express that

the operator might only be applied to operands of a type T, if there is an operator •>•
which accepts two operands of that type T and which returns a value of type bool.

This can be expressed with an implicit parameter:

[(T:type)] max of (x:T) and (y:T) [(+ (T) ">" (T) −> (bool))]
−> (T = if x > y then x else y end)

This requires explanations of some details which have not been mentioned yet:

• The name of a parameter including the subsequent colon can be omitted if it is not

needed.

Therefore, (T) ">" (T) −> (bool) is a correct operator declaration describing ex-

actly the kind of operator that is required by the maximum operator.

• Furthermore, an operator declaration actually constitutes a type, i. e., the type of the

declared operator, which includes the types of its parameters and its result as well as
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its syntax.

Therefore, ((T) ">" (T) −> (bool)) is a correct declaration of an anonymous

parameter whose type is the operator type (T) ">" (T) −> (bool).

• Prefixing this parameter type with a plus sign marks the parameter as an implicit

parameter of the maximum operator, which means that it is implicitly bound to an

operator of the same type that is visible at the point where the maximum operator is

applied. (Alternatively, it would be possible to pass an explicit operand of that type,

cf. Sec. 9.)

Therefore, applications of the parameter in the implementation of the maximum op-

erator (i. e., x > y) will actually be forwarded to the operator that has been passed

(either implicitly or explicitly).

For an application such as max of 1 and 2 with operands of type int that means, that

an operator with type (int) ">" (int) −> (bool), i. e., the predefined •>• opera-

tor for integer values, is implicitly passed to the maximum operator and thus used in

its implementation to compare the operands.

An application such as max of p1 and p2 with operands of type Point, howev er, is

rejected by the compiler, because there is no operator with type (Point) ">"
(Point) −> (bool) that could be passed implicitly. This could be remedied, howev-

er, by defining such an operator before applications of the maximum operator to

points:

(p1:Point) ">" (p2:Point) -> (bool = p1.x > p2.x)

Here, p1 is considered greater than p2 if the x coordinate of p1 is greater than that

of p2.

In fact, the operator that is implicitly passed for an implicit parameter is not required

to have exactly the same type as the parameter. It is rather sufficient, that the parame-

ter can be replaced by the operator according to the following definition: An operator

or parameter can be replaced by another operator or parameter, if every correct appli-

cation of the former is also a correct application of the latter with the same type.

For example, there is actually no predefined operator •>•, but rather a much more

general comparison operator that also supports comparison chains of multiple

operands such as a > b  = c  >= d with well-known semantics from mathematics. (In

contrast to mathematical practice, however, it is even allowed to form “inconsistent”

chains such as a > b <= c.) But because this operator can replace the implicit parame-

ter according to the definition above, it can and will in fact be passed implicitly to ap-

plications of the maximum operator to integer operands.

Another implication of this replacement rule is, that an operator that has implicit pa-

rameters itself can be implicitly passed to an implicit parameter, if there are in turn

matching operators for its own implicit parameters, and so on. For example:

[(T:type)] (x:T) "2" [((T) "*" (T) -> (T))] -> (T = x * x);
[(T:type)] (x:T) "4" [((T) "2" -> (T))] -> (T = x22)
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An application of the bisquare operator •4
to an integer value such as 54

requires a

square operator •2
for integers, which in turn requires a multiplication operator •*•

for integers, which is available as a predefined operator. Therefore, the expression 54

is correct.

On the other hand, an application of the bisquare operator to a point would require

a square operator for points, which would be available if there would be a multiplica-

tion operator for points, which is not the case, however. Therefore, an expression such

as p14
would be rejected by the compiler. Again, this could be remedied in principle

by defining such a multiplication operator.

9 Higher-Order Operators

Operators with implicit parameters as described in the previous section are actually

higher-oder operators, i. e., operators having parameters that are itself operators. This

is not restricted to implicit parameters, however, but operators can also be passed ex-

plicitly to other operators.

To giv e a typical example from functional programming:

[(X:type) (Y:type)]
map (f: f (X) -> (Y)) (ls: [|X|]) -> ([|Y|] =

if ls =/ nil then
(f ls.head) : (map f (ls.tail))

end
);

sq: (x:int) "2" −> (int = x * x);

sq: f (x:int) -> (int = x * x);
ls := (1 : 2 : 3 :);
map sq ls

According to the explanations given in Sec. 8, (f: f (X) −> (Y)) is the declaration

of a parameter with name f whose type is the operator type f (X) −> (Y), i. e., f is

used both as the name of the entire parameter and as the first name of the operator

contained in its type. Therefore, f ls.head is an application of this operator to

ls.head, while the f in map f ls.tail is used to pass this operator to the recursive

invocation of map.

According to the same principle, sq is a constant whose type is the operator type

given after the colon of the constant declaration and whose value is the operator con-

tained in that type. That is, in fact, an exception to the rule given in Sec. 4, which

must now be restated as follows: If the initializer in a constant declaration is omitted,

the value of the constant is either the operator contained in its type −− if this type is an

operator type −− or otherwise a unique new value as stated before. Therefore, sq can

actually be used to refer to the square operator and to pass it to the map operator.
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When an operator is passed explicitly, the requirement given in Sec. 8, that the opera-

tor must be able to replace the corresponding parameter, is relaxed in order to allow

operators whose syntax is different from the syntax of the parameter as in the above

example. (The operator’s syntax is •2
, while the parameter’s syntax is f•.) Instead,

only the parameter and result types of the operator and the parameter must match,

i. e., their names are completely ignored because they are not important. (The precise

rules, which are currently developed in detail, are more complex, because if an opera-

tor has optional, alternative, or repeatable parts, at least some of its names might be

important to disambiguate applications of this operator.)

Finally, it is also possible to return operators from other operators, for example:

add (y:int) -> (f (int) -> (int) =
f: f (x:int) -> (int = x + y)

);

map (add 5) ls

Because the result type of the operator add• is an operator type f (int) −> (int),

its implementation must return an operator of that type. And because the type of the

constant f is also an operator type −− in fact, exactly the same operator type −−, the val-

ue of this constant is, according to the restated rule above, the operator contained in

that type. Finally, because a constant declaration returns the value of the constant, the

implementation of the operator add• returns exactly this operator, which can then be

passed, e. g., to an application of the map operator. Please note, that it is in fact neces-

sary to declare that dummy constant (with an arbitrary name), because the operator

declaration itself does not return the declared operator, but rather its type (cf. Sec. 8).

10 Outlook

The language MOSTflexiPL and its compiler are still under active dev elopment, and

several useful features that have already been developed and prototypically imple-

mented in older versions of the compiler, hav e not been integrated into the current

compiler, including:

• “Call by expression” parameters, which are required to define control structures

such as branches and loops, whose operands shall be evaluated conditionally or re-

peatedly.

• Import and export declarations, which are required to define user-defined scoping

rules and locally confined syntax extensions.

• Virtual operators, which are required to define type aliases to abbreviate or abstract

from complex types and to define declaration operators, i. e., to be able to extend

ev en the syntax that is used to define new syntax.

• Dynamic redefinitions of operators [4], which allow amongst other things strictly

modular extensions of existing code and thus support unanticipated software evolu-

tion.
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• Basic operators for parallel execution and synchronization, which can be used to de-

fine more convenient and advanced constructs for parallel programming.

• User-defined literals, e. g., for types representing date and time values.

• User-defined whitespace and comments to allow any desired syntax for both block

and line comments.

• More descriptive compiler messages in case of errors and ambiguities.

• Meta-operators, which are required to pass the values of a repeatable parameter to

another operator accepting repeatable parameters.

This is in fact a completely new idea that is still under development and has not

been implemented in any of the compiler versions yet.

A feature that is already implemented in the current version of compiler, but has not

been described in this paper, is type deduction: Basically, it is possible to omit almost

all types from declarations as long as they can be deduced by the compiler, i. e., the

types of constants (this has in fact been mentioned in Sec. 4), parameters, and results

of operators.

11 Related Work

During the history of programming language development, the idea of an extensible

programming language has appeared every now and then.

One of oldest and most well-known examples is Lisp [9] with its different dialects and

flavors. Similar to MOSTflexiPL, Lisp does neither distinguish between operators and

functions nor between predefined and user-defined operators/functions. By defining

new functions −− or macros, whose syntactic appearance is identical to that of

functions −− a programmer is actually extending the language all the time. Another

parallel to MOSTflexiPL is the fact that language extensions are defined in the lan-

guage itself, and that a very small language core is sufficient for that purpose. Howev-

er, there are also essential differences: First of all, Lisp does not possess a static type

system. Furthermore, Lisp expressions must always be parenthesized, which signifi-

cantly restricts the possibilities for defining new syntax. Finally, MOSTflexiPL does

not have a “procedural” macro engine, i. e., no user code will be executed at compile

time in order to perform syntactic transformations. In summary, MOSTflexiPL has

considerable advantages over Lisp (complete syntactic freedom and static type safe-

ty), while the deliberately omitted procedural macro facility has not been perceived as

a major limitation yet.

Dylan [3] is a more modern language that has been strongly influenced by Lisp’s

ideas. It also supports syntactic extensibility in the language itself (actually in a

rewrite macro system which is an integral part of the language). Even though the pro-

grammer has more freedom than with Lisp’s simple s-expressions, there are also strict

syntactic limitations which cannot be exceeded. In contrast, the operator concept of
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MOSTflexiPL offers virtually unlimited syntactic freedom. Apart from that, Dylan

does not have a static type system either.

Many different languages, e. g., Haskell [7], Prolog [2], and Scala [8], allow the user

to extend at least the syntax of expressions by defining new operator symbols. Since

functional languages, just as MOSTflexiPL, do not distinguish between expressions

and statements, the syntax of statements (e. g., control structures) becomes also exten-

sible in principle. However, the syntax of types and declarations still remains fixed. In

MOSTflexiPL, however, the basic principle “everything is an expression” implies that

all parts of the language can be extended simply by defining new operators.

An approach whose basic ideas and objectives are almost identical to that of MOST-

flexiPL is “π −− a Pattern Language” [6]. The concept called pattern there −− which is

“the only language construct in π” −− directly corresponds to an operator in MOST-

flexiPL: It possesses a syntax, composed of names (or symbols) and placeholders for

operands, and an associated meaning corresponding to the implementation of a

MOSTflexiPL operator. Thus, both approaches provide the same virtually unlimited

syntactic flexibility that ultimately stems from the lack of any predefined grammar.

A significant difference and advantage of MOSTflexiPL over π is once again the static

type system, since π is completely dynamically typed. In fact, the endeavour to recon-

cile extreme flexibility on the one hand with a maximum of static checkability on the

other hand has been and still is the most ambitious challenge in the development of

MOSTflexiPL.

Apart from that, MOSTflexiPL provides several other useful facilities not found in π,

e. g., implicit and deducible parameters (where the latter are dispensable in a dynami-

cally typed language) or import, export, and exclude declarations which allow,

amongst others, user-defined scoping rules and locally confined syntax extensions.

Finally, MOSTflexiPL might also be considered an adaptive grammar formalism [1,

10]. Because “everything is an expression,” there is a single non-terminal symbol X
denoting expressions. Every operator declaration induces a new production for X
whose right hand side can be derived from the operator’s signature by treating the op-

erator’s names as terminal symbols and replacing explicit parameters with the non-ter-

minal X. The type information associated with the parameters and the result type of

the operator can be added as grammar attributes. Import and export declarations con-

trol the set of currently active productions, while exclude declarations can be used to

rule out some otherwise possible derivations.

12 Conclusion

MOSTflexiPL is a programming language currently under development whose syntax

can be extended and customized by its users in a virtually unlimited way, where a

rather small number of core constructs is sufficient to support a broad range of differ-

ent programming styles. Therefore, it can be used, amongst others, as an extensible

general purpose programming language, but also as a host language for developing
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domain-specific languages. It possesses a static type system and is implemented by a

compiler and a run-time system written in C++.
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Zusammenfassung. In diesem Beitrag stellen wir unsere in [2] veröf-
fentlichten Arbeiten zur Untersuchung der Domänenabhängigkeit von
tiefen Lernverfahren für die Typinferenz vor. Wir zeigen am Beispiel
Type4Py und Python, dass ein Wechsel zwischen den Anwendungsdo-
mänen Webprogrammierung und wissenschaftliches Rechnen zu einer
Verschlechterung in der Vorhersagequalität führt.

1 Einführung

Moderne dynamisch typisierte Programmiersprachen erlauben durch Spracher-
weiterungen wie PEP-484 für Python und TypeScript für JavaScript optionale
Typannotationen zu nutzen und damit auf die Vorteile der statischen Typisie-
rung zurückzugreifen. In Verbindung mit einer Typinferenz zur automatisierten
Ableitung von Typannotationen, ergibt sich ein hilfreiches Werkzeug um Schnitt-
stellen zu dokumentieren, Programmanalysen zu unterstützen und nicht zuletzt
typbezogenen Laufzeitfehlern vorzubeugen. Klassische Verfahren der Typinferenz
basieren auf statischen oder dynamischen Programmanalysen, jeweils einher-
gehend mit einschlägigen Problemen: mangelnde Präzision aufgrund fehlender
Typeinschränkungen dynamischer Sprachen und der in statischen Analysen ange-
wandten Abstraktionen oder der unvollständigen Abdeckung im Fall dynamischer
Analysen. Methoden zur Typinferenz auf Grundlage tiefer Lernverfahren bieten
einen aktuellen, alternativen Ansatz der vielversprechende Ergebnisse liefert.

Der große Teil der zur Typinferenz mittels tiefer Lernverfahren veröffentlichten
Forschungsarbeiten betrachtet dynamische Programmiersprachen. Für die Sprache
Python, die auch im Zentrum unseres Beitrags steht, wurden eine Reihe von
Verfahren vorgeschlagen, so auch Type4Py [4]. In Type4Py werden zwei rekurrente
neuronale Netze mit über 500.000 Programmbeispielen aus ca. 200.000 Python-
Dateien öffentlicher Repositorien trainiert, um die charakteristischen Muster von
Typannotationen anhand von auftretenden Bezeichnern und Programmstrukturen
zu lernen. Beide Netze definieren dann in einem Modell einen Vektorraum, in dem
ähnliche Typen zusammengehörige Gruppen bilden und sich die Typannotationen
zu ungesehenen Programmbeispielen mit einer Ähnlichkeitssuche vorhersagen
lassen. Die Autoren von Type4Py konnten zeigen, dass ihr Verfahren im Vergleich
mit verwandten Ansätzen bessere Ergebnisse bei der Typvorhersage liefert [4].
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Tabelle 1. Datensatz CrossDomainTypes4Py (Aufteilung in 70%, 10% und 20%
Trainings-, Validierungs- und Evaluationsdaten; seltene Typen mit <100 Vorkommen)

Webprogrammierung Wissenschaftliches Rechnen
Repositorien 3.129 4.783

Python-Dateien 166.505 470.011

Train. Valid. Eval. Train. Valid. Eval.
Programmbeispiele 251.064 27.987 61.978 476.768 56.854 148.732

Typen, darunter 7.588 1.195 8.475 14.973 2.218 14.960
... häufige Typen 232 158 192 363 252 332
... seltene Typen 7.356 1.037 8.283 14.610 1.966 14.628

2 Domänen und Datensatz CrossDomainTypes4Py

Die Anwendung und Entwicklung von Lernverfahren, so auch für die Typin-
ferenz, erfolgt im Allgemeinen unter der Annahme, dass sich die statistischen
Verteilungen in den Merkmalen der für das Training genutzten Daten und der
vorherzusagenden Daten nicht unterscheiden. In der Praxis können aber Pro-
bleme bei Verletzung dieser unter dem Schlagwort independent and identically
distributed (iid) bekannten Annahme auftreten. In diesem Beitrag untersuchen
wir die Verteilungen der für die Typinferenz mit Type4Py relevanten Programm-
merkmale unter Berücksichtigung unterschiedlicher Anwendungsdomänen. Im
Fokus steht die Frage, inwiefern sich das auf einer Domäne erlernte Modell auch
für Vorhersagen auf einer anderen Domäne nutzen lässt. Type4Py wurde dabei als
ein aktueller Repräsentant tiefer Lernverfahren für die Typinferenz ausgewählt.

Um diese Frage zu beantworten, wird zunächst ein entsprechender Datensatz
benötigt, der neben einer großen Zahl an Programmbeispielen und Typannotatio-
nen auch Informationen zu den zugehörigen Domänen bereitstellt. Vergleichbare
Datensätze, wie der ursprünglich zum Training von Type4Py genutzte ManyTy-
pes4Py-Datensatz [3], enthalten keine Informationen zu Anwendungsdomänen.
Mittels Repository Mining durchsuchen wir zu diesem Zweck systematisch öf-
fentliche Repositorien nach Python-Dateien, die einerseits eine Abhängigkeit zur
Programmbibliothek mypy aufweisen, da wir in diesem Fall von vorhandenen
Typannotationen ausgehen können. Andererseits filtern wir zusätzlich nach Abhän-
gigkeiten zu den Bibliotheken Flask und NumPy. Diese zwei Bibliotheken sehen
wir jeweils für die Domänen Webprogrammierung und wissenschaftliches Rechnen
als kennzeichnend. Anschließend werden Duplikate entfernt, dies betrifft zum
einen Doppelungen aufgrund von gleichzeitigen Abhängigkeiten zur Bibliothek
Flask und zur Bibliothek NumPy und zum anderen Dateiduplikate. Eine weitere
Vorverarbeitung analog [3] dient der Extraktion relevanter Programmmerkmale
(Bezeichner, Symbolsequenzen, usw.) und Normalisierung von Typannotationen:
Entfernen von Any und None, Auflösen von Typaliasen, Qualifizierung und Be-
schränkung der Verschachtelungstiefe generischer Typen. Kennzahlen für den
sich ergebenden und öffentlich verfügbaren Datensatz CrossDomainTypes4Py [1]
mit über einer Million Programmbeispielen sind in Tabelle 1 angegeben.
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3 Experimente zur Domänenabhängigkeit
Zunächst untersuchen wir, ob es Unterschiede in den statistischen Verteilungen
der zur Typinferenz mit Type4Py genutzten Programmmerkmale, insbesondere
natürlich auch der vorkommenden Typen, zwischen den Domänen Webprogram-
mierung und wissenschaftliches Rechnen gibt. Tatsächlich fällt etwa bei Betrach-
tung der zehn häufigsten Typen unseres Datensatzes auf, dass die Typen str,
Optional[str] und dict vermehrt in der erstgenannten Domäne vorkommen,
wohingegen int, float und numpy.ndarray häufiger in der letztgenannten auf-
treten. Gleichzeitig können wir beobachten, dass beide Domänen lediglich 3.755
Typen gemeinsam haben, bei insgesamt 15.177 beziehungsweise 27.611 Typen.
Der Grund hierfür ist in der schiefen Verteilung der Typen zu suchen, mit vielen
weniger häufig auftretenden Typen, die oft projekt- oder domänenspezifisch sind.

Um die Auswirkung der Verteilungsunterschiede auf die Typinferenz mit
Type4Py zu beurteilen, wird ein Modell mit Programmbeispielen aus der Do-
mäne Webprogrammierung trainiert und anschließend mit Programmbeispielen
der Domäne wissenschaftliches Rechnen evaluiert. Ein zweites Modell wird mit
Programmbeispielen aus der Domäne wissenschaftliches Rechnen sowohl trainiert
als auch evaluiert. Beim Vergleich der Vorhersagequalität der zwei Modelle sehen
wir eine Verringerung des F1-Werts für die exakte Typvorhersage. Auch wenn wir,
anstatt des auf unterschiedlichen Domänen trainierten und evaluierten Modells,
ein auf dem ursprünglichen ManyTypes4Py-Datensatz [3] trainiertes und auf den
Programmbeispielen zum wissenschaftlichen Rechnen evaluiertes Modell betrach-
ten, können wir eine Verringerung des F1-Werts um bis zu 14,15 beobachten.
Werden unbekannte Typen bei der Evaluation vernachlässigt, das heißt Typen
die in den Evaluations- aber nicht in den Trainingsdaten vorkommen, ergibt sich
zwar eine erhebliche Verbesserung der Vorhersagequalität, der Unterschied in der
Typinferenz mit Type4Py in unterschiedlichen Domänen lässt sich aber dadurch
nicht vollständig erklären. Weitere Experimente bestätigen diese Beobachtungen.

Literatur
[1] Gruner, Bernd ; Heinze, Thomas S. ; Brust, Clemens-Alexander: CrossDo-

mainTypes4Py: A Python Dataset for Cross- Domain Evaluation of Type Inference
Systems. http://dx.doi.org/10.5281/zenodo.5747024. Version: Januar 2022

[2] Gruner, Bernd ; Sonnekalb, Tim ; Heinze, Thomas S. ; Brust, Clemens-
Alexander: Cross-Domain Evaluation of a Deep Learning-Based Type Inference
System. In: 20th IEEE/ACM International Conference on Mining Software Reposi-
tories, MSR 2023, Melbourne, Australia, May 15-16, 2023, IEEE, 2023, 158–169

[3] Mir, Amir M. ; Latoskinas, Evaldas ; Gousios, Georgios: ManyTypes4Py: A
Benchmark Python Dataset for Machine Learning-based Type Inference. In: 18th
IEEE/ACM International Conference on Mining Software Repositories, MSR 2021,
Madrid, Spain, May 17-19, 2021, IEEE, 2021, 585–589

[4] Mir, Amir M. ; Latoskinas, Evaldas ; Proksch, Sebastian ; Gousios, Georgios:
Type4Py: Practical Deep Similarity Learning-Based Type Inference for Python. In:
44th IEEE/ACM 44th International Conference on Software Engineering, ICSE
2022, Pittsburgh, PA, USA, May 25-27, 2022, ACM, 2022, 2241–2252

75



Java-TX Eclipse-Plugin

Daniel Holle1,2 und Martin Plümicke1,3

1 Duale Hochschule Baden-Württemberg, Campus Horb, Department of Computer
Science Florianstraße 15, D–72160 Horb, Germany, https:

//www.dhbw-stuttgart.de/horb/forschung-transfer/forschungsschwerpunkte/
typsysteme-fuer-objektorientierte-programmiersprachen

2 d.holle@hb.dhbw-stuttgart.de
3 pl@dhbw.de

Zusammenfassung. Java-TX is a language based on Java 8. It extends
the core of Java with a global type inference scheme. This means that,
in most cases, the types can be left out in the source code. This is grea-
tly reducing the programmer effort, especially in complex scenarios that
involve multiple generics and lambda functions. One problem with this
approach however, is that the types are no longer present in the source
code to be inspected. So an effort has to be made in order to visualize
the sometimes multiple types that have been substituted. This paper in-
troduces a plugin which extends the Eclipse IDE with a new text editor
explicitly made for Java-TX. Its most important feature is the visualiza-
tion of types and the ability to automatically place the concrete types
into the source code.

1 Einleitung

Java-TX [9] ist eine Programmiersprache basierend auf Java 8. Sie erweitert Ja-
va um eine globale Typinferenz. Das heißt, Typen werden automatisch an der
richtigen Stelle eingesetzt und müssen nicht erst deklariert werden. Manchmal
können allerdings mehrere Lösungen valide sein. In diesem Fall werden automa-
tisch Überladungen von Methoden erstellt. Für weitere Details zu Java-TX ist
auf Abschnitt 6 verwiesen.
Da es im Sourcecode alleine nicht ersichtlich ist, welche Typen letztendlich ein-
gesetzt wurden, muss auf andere Weise eine Visualisierung erstellt werden. Mo-
derne IDEs lassen sich über verschiedene Schnittstellen erweitern, um Support
für andere Programmiersprachen bereitzustellen. Im Folgenden soll eine Imple-
mentierung eines solchen Plugins für die Eclipse-IDE vorgestellt werden. Diese
Arbeit basiert auf den Arbeiten [5,10].

2 Motivation und Problemstellung

Im Wesentlichen sollen zwei Features umgesetzt werden. Zunächst soll mit Hilfe
von Markern die generierten Generics[7] und andere Typen im Sourcecode visua-
lisiert werden. Dann soll es mittels Kontextmenü möglich sein, die generierten
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Typen an der richtigen Stelle einzusetzen, falls diese weiter eingegrenzt wer-
den sollen. Besonders bei komplizierten Typen ist es nicht immer sinnvoll, diese
Schritte von Hand durchzuführen. Bei komplexen Beispielen soll die vom Compi-
ler eingesetzte Nebenläufigkeit eingesetzt werden um die Ergebnisse anzuzeigen
sobald eine Lösung vorhanden ist. Dieser Vorgang soll auch im User-Interface
abgebrochen werden können.

3 Aufbau des Plugins und verwendeter Schnittstellen

Das Plugin besteht aus zwei Teilen. Zunächst gibt es den Java-TX-Compiler,
welcher das Backend des Plugins darstellt. Hier implementert ist die Typinfe-
renz und die Überladung von Methoden, sowie das Generieren von Generics.
Kommuniziert wird über das Package typedeployment. Ebenfalls wichtig sind
die Offsets der Typannotationen, damit die Marker an der richtigen Stelle einge-
setzt werden. Fehlermeldungen bei der Kompilation werden auch an das Plugin
weitergegeben.
Das Frontend besteht aus einem Eclipse-Plugin mit eigenem Text-Editor für das
Bearbeiten von Java-TX Programmen. Die Eclipse-API wurde verwendet um
eigene Marker zu erstellen, sowie für das Kontextmenü und den verwendeten
Editor.

Java-TX-Compiler

Typedeployment

Backend

Configuration

Feature

Plugin

Target

Plugin

plugin.xml Java API

Eclipse

3.1 Projektstruktur

Das Plugin ist in mehrere Segmente aufgeteilt. Jedes dieser Segmente besitzt
eine eigene Mavenkonfiguration und bildet ein eigenständiges Eclipseprojekt.

Configuration Hier werden die M2E (Maven for Eclipse) Einstellungen gespei-
chert. M2E ist für das Generieren von Eclipseprojekten aus der Mavenkonfigu-
ration verantwortlich. Aus diesem Grund wird für die Bearbeitung des Plugins
auch Eclipse als IDE eingesetzt.
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Weiterhin werden hier auch die transitiven Abhängigkeiten des Java-TX Compi-
lers in einer separaten pom-Datei spezifiziert. Für die Verarbeitung von Eclipse-
spezifischen Abhängigkeiten wird das Tycho Plugin verwendet. Eclipse basiert
auf dem OSGi-Modell. OSGi ist eine Schnittstelle die es erlaubt Abhängigkei-
ten zwischen Modulen zu modellieren, welche auf der JVM ausgeführt werden.
Die hierzu verwendeten Module werden außerhalb von Maven von sogenannten
Software Repositories importiert. Die Liste dieser Abhängigkeiten wird in einer
XML-Datei gespeichert welche im Target-Segment angelegt ist.
Da Plugins für Eclipse signiert werden sollten, wird das dafür verantwortliche
Mavenplugin „maven-jarsigner-plugin“ importiert. Die Signierung erfolgt in Java
üblicher Weise mit jarsigner und wird von Maven automatisch ausgeführt.

Feature Um Plugins auf dem Eclipse Market Place zu veröffentlichen muss
eine Featuredefinition erstellt werden. Dabei kann ein Plugin aus verschiedenen
Features bestehen oder aber ein Feature aus mehreren Plugins. Die Features
werden dann unter dem Wurzelverzeichnis der Software Repositories gelistet. Ein
Feature kann eine eigene Lizenz besitzen, welche vom Endbenutzer akzeptiert
werden muss bevor das Feature installiert wird.

Plugin Im Plugin Segment wird der eigentliche Quellcode des Plugins gespei-
chert. Es gibt ein src Verzeichnis in dem die Java Dateien angelegt sind. In
der Datei plugin.xml werden die einzelnen Erweiterungspunkte definiert, wel-
che über die Eclipse-API implementiert werden. Eine weitere wichtige Datei
ist das Manifest MANIFEST.MF. Im Manifest wird unter anderem der Classpath
angelegt. Die genaue Definition unterscheidet sich deutlich von normalen Ja-
va Archiven, was mit dem OSGi-Modell zusammenhängt. Einer der speziellen
Keys ist beispielsweise Require-Bundle in dem auf die verschiedenen Module
der Eclipse-API verwiesen wird.

Target In diesem Segment befindet sich die Target-Definition. Diese enthält wie
bereits erwähnt die Definitionen für sämtliche Eclipse-spezifischen OSGi-Module.
Die Module werden von verschiedenen Software Repositories importiert.

3.2 Eclipse API

Um das Plugin in die Eclipse Umgebung zu integrieren werden mehrere Extensi-
ons definiert. Eine Extension agiert hierbei als die Definition einer Schnittstelle
zwischen dem Plugin und Eclipse. Damit Eclipse beispielsweise die verwendete
Klasse für einen Editor findet, wird diese in der Datei plugin.xml hinterlegt.

Konkret werden folgende Extensions definiert:

JavaTX Editor :
<extens i on
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point="org . e c l i p s e . u i . e d i t o r s ">
<ed i t o r

class=" typ in f e r en zp l ug i n . e d i t o r . JavEditor ">
. . .

Typmarker :
<extens i on

po int="org . e c l i p s e . core . r e s ou r c e s . markers ">
. . .

Annotation in der E d i t o r l e i s t e :
<extens i on

po int="org . e c l i p s e . u i . e d i t o r s . annotationTypes ">
. . .

Aussehen des Markers im Editor :
<extens i on

po int="org . e c l i p s e . u i . e d i t o r s . markerAnnotat ionSpec i f i ca t i on ">
. . .

Kontextmenü f ür das Einsetzen von Typen :
<extens i on

po int="org . e c l i p s e . u i . menus">
<menuContribution

class=" typ in f e r en zp l ug i n . e d i t o r . RightClickMenu">
. . .

Der class Parameter agiert als Einstiegspunkt für die jeweilige Extension. Der
point steht für ein Package innerhalb von Eclipse, welches durch die Extension
erweitert werden soll.

4 Features

4.1 Editor

Für das Editieren von Java-TX-Dateien (.jav) wird ein eigener Texteditor be-
reitgestellt. Dieser basiert auf dem in Eclipse internen Texteditor und verhält
sich demnach auch so. Der Editor ist zuständig für das Generieren der Typmar-
ker und der Fehlermarker. Ein Typmarker wird immer an einer Stelle eingefügt,
wo der Compiler einen oder mehrere Typen einsetzen kann. Das können in ge-
nerischen Methoden die generierten Generics sein, oder bei nicht generischen
Methoden ein oder mehrere konkrete Typen welche überladen werden. Die Feh-
lermarker werden eingefügt, falls der Compiler eine Fehlermeldung erzeugt.
Außerdem wird die Mausposition erfasst, und der für das Kontextmenü an-
geklickte Marker ausgewählt. Wenn die geöffnete Datei gespeichert wird, ruft
der Editor den Java-TX Compiler auf um die Klasse neu zu generieren.
Ebenfalls implementiert für den Editor ist die Codevervollständigung. Diese
zeigt, insofern der Typ bekannt ist, bei Aktivierung die möglichen Felder und
Funkionen an, welche für diesen Typ implementiert sind.
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4.2 Outline

Die Outline zeigt die Struktur der Java-TX-Klassen. Ähnlich wie auch bei der
Java-Outline werden hier Klassen, Methoden und Felder mit den dazugehörigen
Typen angezeigt. Die Outline folgt hierbei einer Baumstruktur, in der die einzel-
nen Elemente hierarchisch angeordnet werden. Für Java-TX bedeutet das, dass
hier entweder die Platzhaltertypen angezeigt werden, oder aber konkrete Typen
wenn diese eingesetzt wurden. Wie bei dem Kontextmenü für Marker, kann man
hier auch die Typen einsetzen lassen.

4.3 Kontextmenü

Das Kontextmenü listet einen oder mehrere Typen, die für einen Typmarker
eingesetzt werden können. Es wird bei einem Rechtsklick auf einen der Marker
im Editor angezeigt.

5 Implementierung

Die Implementierung besteht aus zwei Teilen. Als erstes gibt es das Frontend,
welches mit der Eclipse-API interagiert und die Benutzeroberfläche bereitstellt.
Von hier wird der Compiler aufgerufen, der eine im Java-TX-Editor geöffnete
Datei kompiliert. Die Schnittstelle, die das Resultat an das Eclipse-Plugin wei-
tergibt, befindet sich im Paket de.dhbwstuttgart.typedeployment.
Die Idee hinter der Aufgabenteilung zwischen dem Java-TX-Compiler Projekt
und dem Eclipse-Plugin ist, dass gemeinsame Logik, die für verschiedene An-
wendungen basierend auf Java-TX benötigt wird, zentral bereitgestellt wird. So
kann in Zukunft zum Beispiel ein neues Plugin geschrieben werden, welches für
eine andere Entwicklungsumgebung benutzt wird. Denkbar wären auch weitere
Anwendungen zur statischen Analyse des Quelltextes. Ein weiterer Punkt ist,
dass das Plugin nur mit einer Schnittstelle agiert und deshalb nicht selbst in
die Datenstruktur des Compilers eingreifen muss. Die Kupplung zwischen den
beiden Projekten wird also auf ein Minimum verringert. So kann der Compiler
angepasst werden und neue Funktionen implementiert werden, ohne dass das
Plugin neu geschrieben werden muss.

5.1 Typedeployment

Hier gibt es drei Klassen, welche den Hauptteil der Arbeit erledigen. Die Daten-
struktur welche letztendlich an das Eclipse-Plugin weitergegeben wird, ist ein Set
aus TypeInsertPoint innerhalb der Klasse TypeInsert. Ein TypeInsertPoint
besteht aus einem ANTLR-Token, welches den Offset innerhalb des Quellco-
des speichert und einem String welcher das einzusetzende Ergebnis enthält.
Wenn mehrere Marker an der selben Stelle stehen, besitzen sie das selbe To-
ken. Das ist bei der Einsetzung relevant, wenn einer der Marker ausgewählt
werden muss. Eclipse legt mehrere Marker, wenn sie sich an der selben Stelle
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befinden, zusammen. Jeder Punkt besitzt außerdem einen Typ aus dem Enum
KindOfTypeInsertPoint. Hier gibt es normale Inserts, also solche wo innerhalb
einer Klasse Typen eingesetzt werden. Außerdem gibt es Inserts, welche den ge-
nerischen Parametern entsprechen. Hierbei wird zwischen Klassen und Methoden
unterschieden.
Jeder TypeInsertPoint besitzt eine Methode um das Ergebnis in den Quelltext
einzusetzen. Übergeben wird dazu der besagte Quelltext als String und dieser
wird verändert zurückgegeben. Hierfür wird einfach der vorher bestimmte Text
an der richtigen Stelle eingesetzt. Dafür wird die Position des Tokens verwendet.
Erstellt werden die Punkte von der Klasse TypeInsertFactory. Diese generiert
für die generischen Parameter von Klassen und Methoden die jeweils dazugehö-
rigen Punkte zusammen mit dem Text welcher eingesetzt wird. Für die Generie-
rung der Punkte innerhalb des Quelltexts wird das Visitor-Pattern eingesetzt.
Hierfür werden zwei ASTWalker implementiert. Der erste kümmert sich um die
Klassendefinitionen innerhalb einer Quelldatei und ruft wiederum den zweiten
Visitor TypeInsertPlacerClass auf, welcher für die einzelnen Methoden und
Felder die verschiedenen Punkte generiert.
Der Text eines Punktes wird auch durch einen Visitor TypeInsertToString
erstellt, dieser ist diesmal ein ResultSetVisitor. Dieser wird mit den verschie-
denen Klassen von Typen welche der Compiler kennt, aufgerufen.

RefType: Ein Referenztyp, erbt von java.lang.Object.
GenericRefType: Instanz eines generischen Parameter, definiert durch

<T> innerhalb einer Klasse oder Methode.
SuperWildcardType: Typ der Form ? super A, wobei ein Supertyp von A

gemeint ist.
ExtendsWildcardType: Typ der Form ? extends A, wobei ein Subtyp von A

gemeint ist
TypePlaceholder: Typ der im Quelltext weggelassen wurde und durch

die Typinferenz ausgefüllt wird. Übrige Constraints
mit Typplatzhaltern werden als Generics realisiert, das
heißt im Endeffekt wird jeder Typplatzhalter aufgelöst.

Für jeden dieser Typen wird die dazugehörige Textrepräsentation erstellt. Für
die Referenztypen werden beispielsweise der Name und die generischen Typen
innerhalb von spitzen Klammern angefügt.
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5.2 Klassendiagramm des Plugins

Dieses Diagramm ist vereinfacht und stellt nur die wichtigsten Klassen bzw.
Methoden dar.

core

plugin

JavaTXCompiler

+ sourceFiles : Map

+ typeInferenceAsync(...)
+ generateBytecode(...)
+ writeClassFile(...)
+ getGeneratedGenerics(...)

Typinferenz

+ run(...)
+ resolve(type)

JavEditor
- sourceFile
- errorMarkers
- typeReplaceMarkers

+ doSave(...)
+ resolveTypeInserts(...)
+ runReplaceMarker(...)
+ onNewTypeResultFound(...)
- updateMarkers(...)

JavOutline

+ update(...)
+ selectionChanged(...)

JavCompletionProcessor

+ computeCompletionProposals(...)
+ computeContextInformation(...)

RightClickMenu

+ createContributionItems(...)

InsertTypeContribution

+ fill(...)

<<abstract>>
JavMarker

- annotation
+ getPoint()
+ getMessage()
+ getPositionInCode()

ErrorMarker
- message: String
- point: CodePoint

TypeReplaceMaker

+ addResultPair(...)
+ addResultSets(...)
+ adjustResultSet(...)
+ insertPoint(...)

n
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5.3 Editor

Die Klasse JavEditor ist der Dreh- und Angelpunkt des Plugins. Hier werden
die verwendeten Marker gespeichert. Ebenso wird die Outline, sowie über einen
Adapter der Vervollständigungsprozessor JavCompletionProcessor. Kommuni-
ziert mit dem Backend wird über die Klasse Typinferenz, welche ebenfalls vom
Editor instanziiert wird. Bei einem Speichern wird der Zustand zurückgesetzt
und die Typinferenz von neuem ausgeführt.
Der Editor wird als UnifyResultListener implementiert, welcher von der Ty-
pinferenz aufgerufen wird, wenn ein neues Resultat zu Verfügung steht. Dies ist
nötig, da die Typinferenz nebenläufig arbeitet und daher auf einem separaten
Thread läuft. Dies ist vom Plugin her gesehen sinnvoll, da so nicht die Benutze-
roberfläche hängt, wenn die Typinferenz läuft.
Die Methode runReplaceMarker wird aufgerufen, wenn einer der Marker einge-
setzt werden soll. Diese Funktion wird von dem jeweiligen Menü aus aufgerufen.
Verwaltet wird hier der Zustand der einzelnen Marker, da die Position und die
Validität sich jeweils verändert, wenn ein Marker eingesetzt wird.
Die Methode resolveTypeInserts wird vom Vervollständigungsprozessor auf-
gerufen, um die konkreten Typen, welche für einen TypePlaceholder eingesetzt
werden, zu bestimmen.
Ebenfalls vom Editor ausgeführt wird die Bestimmung der Mausposition im Co-
de, da so festgestellt werden kann, ob das Rechtsklickmenü für einen Marker
angezeigt werden soll. Diese Lösung ist nicht ganz ideal, aber da von Eclip-
se keine API bereitgestellt wird, welche ein Rechtsklickmenü für einen Marker
darstellt, musste dieser Workaround implementert werden. In einer vorherigen
Version wurde das Menü über die Quickfix-Funktion von Eclipse für einen Mar-
ker angezeigt. Da diese Quickfixes nun aber in verschiedenen Untermenüs oder
über eine Tastenkombination aufgerufen werden müssen, wurde zwecks Benut-
zerfreundlichkeit die Lösung mit dem Rechtsklickmenü angewendet.

5.4 Outline

Die Outline stellt die für eine Java-TX-Klasse verwendete Struktur da. Hier sieht
man gut die jeweiligen Overloads für die verschiedenen Funktionen, sowie die ver-
wendeten Typplatzhalter und deren Namen. Ebenfalls implementert wird hier
ein Rechtsklickmenü, welches ähnlich zu dem im Editor verwendeten funktio-
niert. Registriert wird die Outline nicht wie sonst üblich über die plugin.xml
Datei sondern es wurde ein Adapter verwendet. Wenn im Editor die Methode
getAdapter mit der Klasse IContentOutlinePage aufgerufen wird, wird eine
neue Instanz der Outline zurückgegeben. Implementiert wurde die Outline durch
eine Subklasse des OutputGenerator aus dem Compiler. Hierbei handelt es sich
um einen Vistor, welcher den Syntaxbaum abläuft und eine Textrepräsentation
erstellt. Die Eclipse-API stellt bereits eine Möglichkeit bereit, eine Baumstruk-
tur als Menü darzustellen. Diese Möglichkeit wird hier genutzt, und jeweils der
Text für die einzelnen Elemente erstellt.
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5.5 Vervollständigungsprozessor

Der JavCompletionProcessor wird jeweils im Editor aufgerufen, wenn das
Shortcut zur Vervollständigung benutzt wird, oder aber ein Punkt für die Feld
und Funktionsaufrufe getippt wird. Die Idee dahinter ist, dass das Program-
mieren mit Java-TX vereinfacht wird, da nicht immer klar ist, welcher Typ an
welcher Stelle verwendet wird. So sieht man auf einen Blick, welche Funkionen
oder Felder im Kontext eines Symbols valide sind. Die Implementierung arbeitet
mit Reflections, es wird also die verwendete Klasse geladen. Diese wird durch
den Editor mit der Methode resolveTypeInserts bereitgestellt. Zurückgege-
ben wird eine Liste mit Klassennamen, welche an der Eingabeposition einge-
setzt werden. Im dargestellten Menü kann man dann die Methode oder das Feld
auswählen, welches man eingefügt haben will. Momentan funktioniert die Ver-
vollständigung nur teilweise, gerade wenn mehrere Methoden überladen werden,
wird nicht immer der richtige Kontext ausgesucht. Hier müsste also noch nach-
gebessert werden.

5.6 Rechtsklickmenü

Das Rechtsklickmenü im Editor ist ähnlich implementert, wie das Menü für die
Outline. Das Menü wird seperat über die org.eclipse.ui.menus Schnittstelle
registriert und hier wird außerdem die Stelle an der das Menü angezeigt wird auf
popup:#TextEditorContext gesetzt, und dadurch wird das Menü nur für den
Texteditor angezeigt. Durch den Editor wird die momentan genutzte Mauspositi-
on ermittelt, und daraus die Cursorposition berechnet. Das RightClickMenu ge-
neriert, falls der Editor dem JavEditor entspricht, eine InsertTypeContribution
welche von ContributionItem erbt. Diese fügt dann mit Hilfe der Methode fill
eine oder mehrere MenuItems an den Anfang des Kontextmenüs. Der Editor be-
füllt eine Liste von TypeInsertMarker die sich auf der Mausposition befinden.

5.7 Marker

Für das Plugin werden zwei Typen von Markern definiert. Zum einen der Feh-
lermarker ErrorMarker und der Typmarker TypeReplaceMaker. Beide erben
von der abstrakten Klasse JavMarker. Hierbei ist zu beachten, dass JavMarker
lediglich für die Implementierung des Plugins verwendet werden. Die eigent-
liche Marker-Instanz die an das Plugin gesendet wird befindet sich im Feld
annotation welches vom Typ Annotation ist. Diese Annotationen werden durch
die plugin.xml Datei definiert, wo auch das Aussehen und das Icon der Marker
festgelegt wird. Die Marker werden durch die Funktion placeMarkers der Edi-
tor Klasse gesetzt. Diese wird asynchron ausgeführt, wieder um ein Hängen der
Entwicklungsumgebung zu verhindern. Immer wenn die Typinferenz ein neues
Ergebnis berechnet, werden die Marker neu gesetzt. Auch wenn die Datei ge-
speichert wird, werden die Marker neu generiert. Ein Problem mit den Markern
in der momentanen Version ist, dass diese nur ein Zeichen breit sind. Es wäre
sicherlich besser, wenn die Marker das gesamte Symbol auf das sie angewendet
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werden einnehmen. Da das Token bereits diese Information hat müsste es relativ
einfach sein, diese Änderung vorzunehmen.

6 Java-TX

In Java gibt es bisher keine globale Typinferenz (auslassen aller Typinformationen
und automatische Berechnung zur Übersetzungszeit), keine echten Funktionsty-
pen und kein vollumfängliches Pattern Matching. Java-TX (TX steht für Type
eXtended) wendet sich diesen drei in Java noch fehlenden Eigenschaften zu. Das
Herzstück von Java-TX ist die Typinferenz.

6.1 Globale Typinferenz

Globale Typinferenz meint im Gegensatz zu lokaler Typinferenz, dass alle Typen
eines Java Programms weggelassen werden können und diese zur Übersetzungs-
zeit inferiert werden. Das heißt, dass Java die statische Typeigenschaft behält.
Dies gilt insbesondere auch für rekursive Lambda-Ausdrücke. Für den Typin-
ferenzalgorithmus verweisen wir auf [6]. Drei Beispiele, die die Mächtigkeit der
Typinferenz zeigen geben wir hier an.
Das erste Beispiel ist die Fakultät, definiert als rekursiver Lambda-Ausdruck.

c lass Faculty {
fact4 = (x) -> {

i f (x == 1) {
return 1;

}
else {

return x * (fact.apply(x -1));
}

};
}

Der Typinferenzalgorithmus berechnet für das Attribut fact den echten Funk-
tionstyp Fun1$$<Integer,Integer> 5.
Das zweite Beispiel zeigt die zusätzliche Möglichkeiten, die die Typinferenz für
das Overloading bietet.

c lass OL {
m(x) { return x + x; }

m(x) { return x || x; }
}

c lass OLMain {

4 In Java-TX kann im Gegensatz zum Java–Standard einem Attribut direkt ein
Lambda-Ausdruck zugewiesen werden. In Standard Java ist dies nur über einen
Konstruktor möglich.

5 Echte Funktionstypen werden in Abschnitt 6.2 näher betrachtet
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main(x) {
var ol;
ol = new OL();
return ol.m(x);

}
}

System.out.println(ol.main (2));
System.out.println(ol.main (2.0));
System.out.println(ol.main("applied␣to␣a␣string␣"));
System.out.println(ol.main(true));

In der Klasse OL wird eine überladene Methode m für die Addition und eine
Methode m für das boole’sche oder deklariert. In der Funktion main der Klasse
OLMain wird m der Klasse OL aufgerufen. Dies ergibt nun je nach Argument
entweder die eine oder die andere Methode. Dementsprechend ist main nun für
Werte der Typen Integer, Double, String und Boolean aufrufbar.
Das dritte Beispiel zeigt, dass der Typinferenzalgorithmus auch Typen mit Wild-
cards bestimmt.

public c lass MatrixOP extends Vector <Vector <Integer >> {
mul = (m1, m2) -> {

var ret = new MatrixOP ();
var i = 0;
while(i < m1.size ()) {

var v1 = m1.elementAt(i);
var v2 = new Vector <Integer >();
var j = 0;
while(j < v1.size ()) {

var erg = 0;
var k = 0;
while(k < v1.size ()) {

erg = erg + v1.elementAt(k)
* m2.elementAt(k). elementAt(j);

k++; }
v2.addElement(erg);
j++; }

ret.addElement(v2);
i++;}

return ret;}

Abb. 1. Matrix–Multiplikation

In der Klasse MatrixOP (Abb. 1), die eine Erweiterung von Vector<Vector<Integer>>
ist, wird ein Attribut mul deklariert. mul wird ein Lambda-Ausdruck zugeordnet,
der die Matrix–Multiplikation berechnet. Als Typ für mul wird berechnet:
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mul: Fun2$$<Vector<? extends Vector<? extends Integer>>,
Vector<? extends Vector<? extends Integer>>,
MatrixOP>

6.2 Integration von echte Funktionstypen und functional interfaces

In Version 8 von Java [4] wurde die Realisierung von Lambda-Ausdrücken mit
Functional Interfaces als Target Types realisiert. Die Nachteile dieses Ansat-
zes haben wir in [8] dargestellt. Weiterhin haben wir dort beschrieben wie wir
Funktionstypen analog zu Scala in Java-TX eingeführt haben.
Der Ansatz in Java-TX ist echte Funktionstypen einzuführen, gleichzeitig aber
das Target Typing mit Functional Interfaces zu erhalten und beide Ansätze zu
integrieren.
Dazu haben wir in Java-TX zwei Bündel von speziellen Functional Interfaces
ergänzt:

FunN$$ <-A1, ... , -AN, +R> {
R apply(A1 arg1 , ... AN argN);

}

FunVoidN$$ <-A1, ... , -AN> {
R apply(A1 arg1 , ... AN argN);

}

Die Interfaces haben im Gegensatz zu sonstigen Typen in Java Declaration-site
Varianz. Das heißt, dass bereits bei der Deklaration festgelegt wird, welche Para-
meter kovariant und welche kontravariant sind. ’-’ steht dabei für Kontravarianz
und ’+’ für Kovarianz. Weiterhin sind für die Interfaces Wildcards als Parameter
nicht zulässig. Lambda-Ausdrücke werden durch diese Interfaces explizit typi-
siert.
Als Beispiel betrachten wir aus JavaFX die Methode setOnAction der Klasse
javafx.scene.control.Button. Sie erwartet als Argument einen javafx.event.
EventHandler. Das Interface javafx.event.EventHandler ist ein Functional
Interface:

interface EventHandler <T extends javafx.event.Event >
{

void handle(T event);
}.

Wir definieren zunächst einen explizit getypten Lambda-Ausdruck:

Fun1Void$$ <ActionEvent > helloworld =
event -> System.out.println("Hello␣World!");

Diesen geben wir nun als Argument der Methode setOnAction mit:

Button btn = new Button ();
btn.setOnAction(helloworld );

87



Das Beispiel zeigt die Integration der beiden Konzepte Typisierung von Lambda-
Ausdrücken durch echte Funktionstypen und Target Typing von Lambda-Ausdrü-
cken. Dem Argument der Methode setOnAction mit Target Type EventHandler
wird die explizit getypte Variable helloworld, belegt mit einem Lambda-Aus-
druck, zugeordnet.

6.3 Pattern–Matching

Pattern–Matching wird derzeit in Java-TX implementiert. Erste Überlegungen
zur Realisierung wurden in [11] angestellt. In Java werden seit der Version
14 zum Teil als sogenannte Preview–Features Pattern–Matching Ansätze für
instanceof- und switch-Statements realisiert. [3,2]. Unterstützend wurden da-
bei sealed classes and record–Typen eingeführt.
In Java-TX soll Pattern–Matching wie in funktionalen Programmiersprachen mit
Typinferenz gekoppelt werden. Dazu eigenen sich besonders die Record Patterns
[1], die für Version 21 angekündigt sind.
Folgendes Beispiel zeigt den Ansatz. Seien die Datenstrukturen definiert:

record Point( int x, int y) {}

enum Color { RED , GREEN , BLUE }

record ColoredPoint(Point p, Color c) {}

interface Shape {}
record Rectangle(ColoredPoint upperLeft ,

ColoredPoint lowerRight) implements Shap {}
record Circle(ColoredPoint c, int r) implements Shape {}

Die Methode, die eine Figur drehen soll, kann mit Hilfe von Pattern Matching
wie folgt deklariert werden:

Shape rotate(Shape shape , double angle) {
return switch (shape) {

case Circle c -> c;
case Rectangle r -> r.rotate(angle );

Pattern Matching ermöglicht es die Matching Variablen c and r auf der rechten
Seite bei der Ausführung zu benutzen.
Des weiteren ist es möglich geschachtelte Pattern zu definieren. Als Beispiel dafür
wird in der folgenden Methode der Mittelpunkt einer Figur bestimmt.

Point center(Shape shape) {
switch (shape) {
case Rectangle(ColoredPoint(Point pt1 , Color color1),

ColoredPoint(Point pt2 , Color color2)
-> center(pt1 , pt2);

case Circle(ColoredPoint(Point pt,Color color), int r)->pt;
}
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Die Erweiterung in Java-TX soll zunächst die Nutzung von Pattern Matching
ähnlich wie in funktionalen Sprachen ohne Typdeklarationen der Matching Va-
riablen ermöglichen:

Point center ((shape) {
switch (shape) {
case Rectangle(ColoredPoint(pt1 ,color1),

ColoredPoint(pt2 ,color2)->center(pt1 ,pt2);
case Circle(ColoredPoint(pt,color), r) -> pt;

}

Dies wird in Java–21 mit Hilfe des var–Schlüsselworts auch möglich sein. Wei-
terhin soll Pattern Matching auch in Methodenköpfen möglich werden:

Point center(Rectangle(ColoredPoint(pt1 , color1),
ColoredPoint(pt2 , color2 )) {

return center(pt1 , pt2);
}

Point center(Circle(ColoredPoint(pt,color), r)) {
return pt;

}

7 Ausblick

Da das momentan implementierte Plugin nur für eine einzige Entwicklungs-
umgebung funktioniert, nämlich Eclipse, in der Praxis allerdings verschiedene
Entwicklungsumgebungen verwendet werden, wäre es wünschenswert für diese
auch ein Plugin zu entwickeln. Da das Projekt modular aufgebaut wird und
der Java-TX-Compiler die eigentliche Implementierung der Features bereitstellt,
muss dieser hierfür nur geringfügig angepasst werden.
Eine in den letzten Jahren immer häufiger verwendete API ist das von Microsoft
entwickelte Language Server Protocol6. Es ist ein größtenteils Sprachagnosti-
sches Framework, welches für verschiedene Entwicklungsumgebungen verwendet
wird. Die Basis ist hierbei ein JSON-RPC mit dem über Sockets oder Pipes
Befehle von der Entwicklungsumgebung an das Backend des Plugins gesendet
werden. Dieses kann also weiterhin in Java geschrieben werden. Mit diesem Fra-
mework könnte man also ein Plugin schreiben, welches größtenteils unabhän-
gig von der Entwicklungsumgebung funktioniert. Hierdurch könnten also ande-
re Entwicklungsumgebungen wie Visual Studio Code, IntelliJ IDEA oder sogar
Emacs unterstützt werden. Ein Nachteil ist allerdings, dass Funktionen wie das
Rechtsklickmenü nicht direkt unterstützt werden. Es müsste also eine mit dem
LSP kompatible Lösung gefunden werden, wie beispielsweise durch Refactorings.
Durch das LSP könnten auch sogenannte Typinlays (also im Sourcecode ange-
zeigter, generierter Text) realisiert werden. Diese würden sich gerade für Java-TX
besonders eigenen, wenn nur ein Typ berechnet wurde.
6 https://microsoft.github.io/language-server-protocol/
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Ein weiters Feature, welches noch implementiert werden sollte ist das Syntax-
highlighting. Hier könnte eine auf Java basierte Grammatik eingesetzt werden,
wie sie auch im Java-TX-Parser verwendet wird. Angepasst werden müssten nach
jetzigem Stand nur die optionalen Typen.
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Optimierung von Random-Access Listen

in Haskell
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In der modernen Programmierung sind dynamische Listen eine zentrale Da-
tenstruktur. Neben der Möglichkeit auf die Elemente e�zient über den Index
zuzugreifen, könnne diese auch dynamisch verlängert oder verkürzt werden. In
Java stehen sie der/dem Programmierer*in als ArrayList zur Verfügung und in
Python sind sie die einzige eingebaute arrayartige Datenstruktur.

In der Funktionalen Programmierung sind Listen ebenfalls eine zentrale Da-
tenstruktur. Allerdings erlauben diese nur einen recht ine�zienten (linearen)
Zugri� auf ein Element an einem bestimmten Index. Okasaki hat als Alternative
eine funktionale Datenstruktur für Random-Access-Lists vorgestellt, mit wel-
cher alle Zugri�e und Veränderungen in logarithmischer Laufzeit in der Länge
der Liste möglich sind. Diese Implementierung basiert auf Ketten von gröÿer
werdenden blattmarkierten Binärbäumen. Wegen der komplexen Struktur sind
für den Zugri� mehrere (logarithmische) Operationen notwendig, wodurch die
absolute Laufzeit z.T. weit hinter der bei gewöhnlichen Haskell-Listen zurück
bleibt. Dies hängt auch damit zusammen, dass in der Datenstruktur nur zwei
Fälle unterschieden werden, welche aber jeweils im Speicher als ein Speicherwort
repräsentiert werden und somit viel Speicher verbrauchen.

Wir präsentieren eine Optimierung dieser Struktur, welche es ermöglicht dy-
namische Arrays kompakter und bis zu doppelt so e�zient umzusetzen. Die Idee
ist die Verwendung von mehr Fallunterscheidungen, so dass die Repräsentation
kompakter wird. Diese Idee geht damit einher, dass man in der Implementierung
anstelle von Binärzahlen andere Zahlensysteme, wie z.B. Hexadezimalzahlen ver-
wendet.

Die Optimierung erfolgt recht schematisch, so dass es sich im wesentlichen um
Boilerplate-Code handelt. Diesen erzeugen wir mit Hilfe von Template-Haskell
automatisch und können so skalieren, wie sehr wir die Datenstruktur kompri-
mieren wollen. Der generierte Code wird hierbei allerdings immer gröÿer, so dass
sich ein Optimum ergibt, welches dann praktisch genutzt werden sollte.
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Software traceability is the ability to connect different artifacts created during
the development of a software system [SZ05], where test-to-code traceability links
are especially important. Firstly, they aid impact analysis by showing the tests
that are likely affected by a code change and vice versa. They assist developers
to keep test and code in sync, thereby reducing the rate of test failures [WK22],
and are also employed in regression test suite optimization to determine which
tests to execute after a code change [RD09]. Secondly, test-to-code tracelinks
are beneficial in the context of program comprehension, where tests serve as a
valuable documentation artifact for the code, which shows how parts of a system
are supposed to be used [LFO08]. When tests are linked to – or automatically
generated from – a software specification, test-to-code tracelinks also help one
to establish links from the specification to code units.

In practice, test-to-code tracelinks are rarely maintained manually, posing a
need for automatic recovery strategies. Even though candidate tracelinks can
be determined from code coverage information, many tests invoke functions
that are not considered to be amongst the functions under test, such as func-
tions that initialize the state of an object, or helper functions, getters and set-
ters [WK22]. Based on this observation [RD09] proposed six approaches for au-
tomatic tracelink recovery, which have been widely adopted and extended since
(see, e.g., [Qus+14], [KTV18], and [WK22]). These approaches exploit naming
conventions, lexical analysis, static call graphs, and information from version
control systems, and operate either at method level, linking production code
methods to test methods, or at class level, linking production and test classes.
However, many such approaches rely on developer discipline or require strong
assumptions on the test structure.

This talk introduces a novel approach to automatically recovering test-to-
code tracelinks, which is based on code mutation. It first generates mutants of
the production code and then, in the spirit of mutation testing [JH11], links a
test to a method in the production code if the respective test kills a mutant
in the method. We evaluate our approach on four large open-source projects
(GSON, JFreeChart, CommonsIO and CommonsLang) and, when compared to
existing tracelink recovery methods [WK22], obtain promising results already
with a basic set of mutation operators. Unlike these recovering methods, our
approach is able to establish tracelinks at statement level, which is beneficial
especially for program comprehension.
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Abstract. Muli is an extension of Java by logic variables and a built-in
search mechanism. Unbound logic variables in conditions of conditional
statements lead to branching of the computation. For each branch, cor-
responding constraints are added to a constraint store. If the accumu-
lated constraints become unsatisfiable, the corresponding branch is dis-
carded. Muli supports several search strategies such as depth-first search,
breadth-first search, and iterative deepening. It allows logic variables not
only to represent basic values but also objects and arrays.

Extended Abstract

There are quite a few approaches to combine different programming paradigms.
For instance, functional logic programming languages such as Curry [HKMN95]
and Babel [KLMR90,MKLR90] combine features from functional and logic pro-
gramming. Scala [OR14] combines object-oriented and functional programming.
Also, current versions of object-oriented languages such as Java include more and
more features from functional programming. Higher-order functions and streams
are the most prominent ones. There are also attempts trying to combine object-
oriented and (constraint) logic programming. For instance, tuProlog [DOR05]
enables accessing Java features from Prolog. However, it does not integrate the
two paradigms seamlessly. Both paradidgms remain clearly separated. Another
approach to combine constraint logic and object-oriented programming is Oz
[RBD+03]. It has a logic programming flavor where object orientation is simu-
lated on top of the core language. It does not support the symbolic representation
of objects and arrays.

Our approach is the Muenster Logic Imperative Programming Language
Muli [DK23,WK22]. It extends the object-oriented programming language Java
by logic variables as known from the logic programming language Prolog and by
encapsulated search as known from the functional logic programming language
Curry [HKMN95]. Muli achieves a seamless integration of constraint-logic and
object-oriented programming. When the condition of an if-statement or of a loop
contains unbound logic variables, this may lead to a branching computation.
For each branch, a corresponding constraint is added to a constraint store. If
the accumulated constraints of a branch are no longer satisfiable, the branch is
discarded. Syntactically, the only addition to Java is the keyword free, which
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can be used in variable declarations, e.g. in int x free;. It indicates that the
corresponding variable is an unbound logic variable as in Prolog. In contrast
to Prolog, its value may be changed by assignments. This also holds for object
fields and array contents. Thus, side-effects are allowed as in Java.

Muli supports several search strategies when dealing with the corresponding
search space. In particular, depth-first search, breadth-first search, and iterative
deepening can be chosen.

Logic variables and the mentioned search are only allowed in encapsulated
search regions. Thus, outside of these search regions, Muli behaves just like
Java. This enables non-symbolic computations to be executed efficiently, while
providing the built-in search mechanisms where needed. Test-case generation is
an example of an application where this combination of symbolic and concrete
computing is extremely helpful [WTK22].

While the first versions of Muli only allowed logic variables of basic types,
recent extensions now also allow logic variables to represent objects [DWK21]
and arrays [WK23]. Class hierarchies are hereby properly taken into account.

The following example solves the well-known NP-complete Knapsack Prob-
lem. Notice the use of the boolean logic variable take in line 19. It determines
whether the considered item should be put into the knapsack or not. The con-
straints generated by the condition of the if-statement in line 20 ensure that an
item is only considered, if it still fits into the knapsack. Finally, the check in
line 23 makes sure that a set of selected items is only accepted as a solution, if
the capacity of the knapsack is fully used. Notice that the formulated Muli code
does not explicitly implement a search algorithm, but leaves the solution to the
included constraint solver.

1 public c lass Knapsack {
2 stat ic Item [ ] i tems = {new Item ( "bread" ,750 ,10) ,
3 . . .
4 new Item ( "water " , 1000 ,30 )} ;
5
6 public stat ic c lass Item {
7 St r ing item ;
8 int weight ;
9 int b en e f i t ;

10 Item ( St r ing i t , int w, int b){
11 item = i t ; weight = w; b en e f i t = b ; }
12 }
13
14 public stat ic ArrayList<Item> f i l lKnapsack ( int capac i ty ){
15 int weight = 0 ;
16 ArrayList<Item> r e s u l t = new ArrayList<Item >();
17 for ( Item item : items ) {
18 i f ( weight == capac i ty ) break ;
19 boolean take f r e e ;
20 i f ( weight + item . weight <= capac i ty && take ) {
21 r e s u l t . add ( item ) ;
22 weight += item . weight ;}}
23 assume ( weight == capac i ty ) ;
24 return r e s u l t ;
25 }
26 }

The method fillKnapsack can then be used in an encapsulted search region
which delivers a list of solutions. These solutions can then be processed e.g. one
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by one in a loop. The considered version of the Knapsack Problem ignores the
benefits of the items.
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Abstract. In recent years, research on language product line (LPL) en-
gineering has emerged. Building on the ideas of modular compiler con-
struction and software product line engineering (SPLE), LPLs enable
language users to choose and pick language features from which a corre-
sponding compiler, interpreter and/or integrated development environ-
ment is composed. While several LPL engineering approaches showcased
their general applicability to individual cases, most only considered com-
position at the concrete or abstract syntax level, avoiding the complexity
of code generation. Thus, it is currently impossible to adequately com-
pare different LPL engineering approaches. To remedy this, I aim to
establish a suitable, holistic language family of fully functional compil-
ers. Moreover, I aim to provide a method for comparing different LPL
approaches using the goal question metric approach. In this paper, I
present initial ideas and work-in-progress results.

Keywords: Compiler Construction · Software Product Lines · Language
Product Lines · Empirical Evaluation Method

1 Introduction

Computer scientists in the field of compiler construction generally agree that
the development of programming languages is inherently complex. Moreover,
as most of the compiler is generated by compiler construction tools (or lan-
guage workbenches [16]), reuse is done opportunistically by copying definitions,
grammar fragments, attribute grammar equations or translation rules. This op-
portunistic reuse is more akin to recycling, than to the notion of a reusable
component, i.e., “a reusable unit encapsulating a potentially incomplete language
definition [comprising] the realization of syntax and semantics of a (software)
language.” [6, p. 243]. To improve reuse in compiler construction, researchers
initially focused on modular compiler constructions [18, 23, 35, 38]. Still, many
established compiler construction tools lack means to create reusable (language)
components. This changed in the past decades, as compiler construction tools
and language workbenches improved providing means for systematic reuse of
language components, e.g.[5, 10, 12, 17, 47, 49]. Building on the ideas of modu-
lar compiler construction and systematic reuse, more recently, researchers coined
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the term language product line (LPL), e.g. [11, 27, 51], to denote the system-
atic development of a set of compilers/interpreters for a family of languages by
composing reusable language components. Adopting ideas from software prod-
uct line (SPL) engineering, language users should be able to choose and pick
needed language features1 from which a corresponding compiler/interpreter and
integrated development environment (IDE) is constructed. As a result, several
LPL approaches have been published indicating their applicability and func-
tional suitability by showcasing their application to individual language families.
Naturally, the presented approaches differ in scope and level of abstraction; i.e.,
while many approaches focus on composing the concrete or abstract syntax only,
e.g. [26, 28, 29, 51], few include the intermediate or machine code generation, for
instance, [6]. Moreover, while some approaches consider families of general pur-
pose languages, e.g. [27, 48], it is currently impossible to systematically compare
the different LPL engineering approaches.

To remedy this, I aim to design an evaluation method to compare different
LPL engineering approaches employing a suitable language family as a common
case.[ˆ1.0] To achieve this, I must answer the following research questions:
(RQ1) What comprises a holistic family of programming languages for comparing
LPL engineering approaches?
(RQ2) What are suitable goals, questions, and metrics for evaluating an LPL
engineering approach?

In essence, RQ1 recognizes that many approaches employ either limited pro-
gramming languages or limit the scope of the LPL to generate code of a host
programming language. While LPLs of current programming languages are un-
doubtedly realistic cases employing a large variety of language concepts, the
huge effort required to create a corresponding LPL makes their application for
a comparative case study infeasible. Similarly, a custom DSL or the family of
state-machine languages [9, 43, 45] is unsuitable as they often lack language con-
cepts found in programming languages, e.g., coercion, recursion or nested scopes.
While a small sample language might not be realistic, it might still be suitable
if it incorporates the same challenging language concepts. Consequently, I will
consider a family of holistic programming languages that is small yet able to “il-
lustrate the fundamental problems of compiler construction, but avoids the unin-
teresting complications” [50, p.319], namely the family of LAX languages. While
a suitable language family as a common case is imperative, RQ2 acknowledges
that a suitable evaluation method for comparing LPL engineering approaches
must define which aspects of an LPL’s development and implementation are
measured and how these aspects provide evidence for the quality of the LPL
engineering approach under study. Consequently, I will employ the goal question
metric (GQM) approach [7] to define comparison goals, evaluation questions,
and corresponding metrics. Answering both questions, permits me to establish
a suitable evaluation method for comparing LPL engineering approaches.

Please note that I present initial ideas and work-in-progress results.

1 Following Vacchi and Cazzola [44], language features are either language constructs,
e.g., if then else, or language concepts (without concrete syntax), e.g., recursion.
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2 Background

Henceforth, I provide a brief overview of the main concepts and history of modu-
lar compiler construction, software product line (SPL) engineering, and language
product line (LPL) engineering. Furthermore, I will discuss contemporary ap-
proaches for comparing compiler construction tools and language workbenches.

2.1 Modular Compiler Construction

While modular and incremental development of software were initially empha-
sized as crucial properties by Liskov [31] and Basil and Turner [4], respec-
tively, the idea of modular development of compilers was initially discussed by
Ganzinger [18]. He proposed a method for modular descriptions of compilers
based on ideas from modular algebraic specifications, abstract datatypes, and
attribute grammars. While rudimentary, he introduced compiler modules that
decorate nodes of parse trees with semantic information. Later, Kastens and
Waite [23] expand on this idea by introducing attribution modules that per-
mit the modular and reusable specification of attribute grammars utilizing in-
heritance. These could be employed to modularize the different phases of the
compilation process, e.g., parsing, semantic analysis, and code generation, to
permit the modular specification of a compiler. Mernik and Z̆umer [35] recog-
nized that while compilers are usually modularized along the compilation phases,
these modules “cannot be easily reused or extended in other language specifica-
tions” [35, p. 2]. Building on the ideas of Kastens and Waite [23] and Ganzinger
[18], they argue that languages should be extended along language features.
They argue that this can be achieved by extending all compilation phases using
attribute grammars and inheritance in a concerted effort. In essence, all exten-
sions contributing to a specific language feature form a compiler module. Based
on these ideas, a plethora of approaches emerged that go beyond the limitation
of inheritance based extensions by means of, e.g., model-based language develop-
ment [46], grammar inheritance and embedding [25, 38], or generalized language
components [44]. The latter two will be discussed in more detail in subsection 2.3.

Please note that modular compiler verification, e.g. [36], is beyond the scope
of this paper.

2.2 Software Product Line Engineering

Software engineers striving for ever-increasing modularity and reusability, led to
the research area of software product line (SPL) engineering [40]. In this area,
notions of product variants, product families, and product lines are adopted
from the automotive industry and applied to software development. According
to Northrop [37], an SPL “is a set of software-intensive systems that share a
common, managed set of features satisfying the specific needs of a particular
market segment or mission and that are developed from a common set of core
assets in a prescribed way.” In essence, an SPL is a family of software systems
whose commonalities and differences are managed by means of features, such
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Fig. 1: An illustrative example of a feature model [28].

that given a feature selection, a variant of the software system can be derived
from a common set of software modules (or components).

To represent the variability of an SPL, Kang et al. [22] introduced the notion
of feature models. As illustrated in Figure 1, a feature model is a tree whose
nodes are features.2 In detail, a feature can have multiple children, whereas each
child can be either Optional or Mandatory. Moreover, an Or group (filled pie
slice) denotes that at least one of the child features must be selected, whereas
an Alternative group (white pie slice) denotes that only exactly one of the child
features must be selected. Furthermore, Concrete features are mapped to imple-
mentation artifacts, while Abstract features only improve the tree’s readability.
Last but not least, a feature model can be supplemented by a list of predi-
cate logic expressions with features as atoms, to allow for specifying arbitrary
cross-tree constraints. Given a feature model, a feature configuration denotes a
set of selected concrete features. In turn, a feature configuration is considered
valid if it fulfills the constraints represented by the feature model and cross-tree
constraints. The feature configuration {Mandatory,OptionA} would be a valid
feature configuration of the feature model in Figure 1, as it selects the manda-
tory feature and at least one of its children.

Recently, researchers in the area of SPL engineering highlighted the linguistic
distinction between variability in space and variability in time [2]. The former
refers to the existence of a software system in different variants at the same
time [40, Def. 4-6]. In contrast, the latter refers to the existence of different
versions of the software system valid at different times [40, Def. 4-5]. Besides
these, Ananieva et al. [2] describe variability in space and time to refer to the
existence of a software system in different variants and versions valid at the
same time.

2.3 Language Product Line Engineering

Inspired by SPL engineering and the advances in modular compiler construc-
tion, researchers proposed language product line (LPL) engineering [51] to per-
2 In this paper, I will employ the notation used within FeatureIDE [33].
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mit the feature-oriented development of compilers or interpreters for families
of domain-specific languages (DSLs), e.g., [14, 28, 29, 51], and general purpose
programming languages (GPLs), e.g., [8, 13].3 While researchers focus on lan-
guage variants, practitioners struggle with language versions that lead to ever-
increasing complexity in compilers when required to support all previous lan-
guage versions as well. Regardless of the cause for variability, LPL engineering
approaches, e.g., [30, 44], structure a family of languages along language fea-
tures. A language feature is any user-relevant language construct, e.g., while
loops or switch case, and language concept, e.g., recursion or exceptions. Sim-
ilar to an SPL, given a selection of language features, an LPL derives a compiler
or interpreter for a language variant.4 In contrast to SPL, however, there exist
two fundamentally different LPL development approaches [26]. Top-down LPLs
design a feature model of the language family first and implement correspond-
ing language components afterward. By contrast, bottom-up LPLs implement
annotated language components first and derive the feature model from the
annotations and components’ dependencies. While bottom-up LPLs are more
flexible, due to the complexity and high coupling of language components, the
derived feature model might be overly restrictive, requiring the renaming of open
non-terminals to derive a viable language variant [27].

2.4 Contemporary Comparisons of Compiler Construction Tools
and Language Workbenches

While the various LPL engineering approaches highlighted in subsection 2.3 em-
ployed case studies illustrate their applicability, only a few employ a common
family of languages. Although many approaches employ a DSL to specify state
machines as an illustrative case, e.g. [9, 43, 45], their solutions are not suitable
for comparison as each approach only focuses on showcasing functional suit-
ability and applicability. Thus far, only Kühn and Cazzola [26] have presented
a comparative study of two different LPL engineering approaches, comparing
a top-down and a bottom-up LPL approach. Employing role-based extensions
to a modularized Java parser and printer, this comparison only compares the
syntax analysis phase. As a result, none of these cases cover all aspects of a com-
piler, from syntax analysis down to code generation. When considering language
workbenches themselves, Erdweg et al. [16] present a qualitative comparison of
language workbenches, focusing on their capabilities. A quantitative compari-
son of different language workbenches was presented by Erdweg et al. [15], who
tasked experts with implementing a small language for questionnaires. While this
was the largest language workbench comparison, Kelly [24] correctly criticized
their results for only comparing lines of code and coverage of capabilities. Kelly
[24] argues that neither lines of code, user satisfaction, development time nor de-
velopment costs are suitable metrics for comparing language implementations.
3 Méndez-Acuña et al. [34] provides a comprehensive systematic literature review of
LPL engineering approaches.

4 Note that many LPL approaches additionally generate the IDE for the language
variant, as well [17].
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Aside from language workbenches, Ortin et al. [39] compared two parser genera-
tors in a compiler construction course, still focusing on the syntax analysis phase
and measuring development time and user satisfaction. Again, these comparisons
did not consider all aspects of a compiler and employed questionable metrics.
While the comparison of compiler construction tools (or language workbenches)
is rarely considered, many researchers have compared different compilers for the
same language, e.g., [1, 41], yet most of them focus on the performance of the
compiler and/or the generated machine code. While performance is an objective
measurement, I argue that compilation performance is not a critical property of
LPL engineering approaches, at least not at this stage of their maturity.

3 Towards a Case Study for Language Product Line
Engineering

As I previously established, contemporary comparisons of LPL approaches lack
a common programming language as a case as well as suitable properties mea-
sured for comparison. Thus, to design an evaluation method5 for the comparison
of LPL engineering approaches, we require a suitable family of programming
languages as a case as well as a method for the analysis of individual LPL real-
izations based on the goal question metric (GQM) paradigm [7].

3.1 Towards LAX as a Language Product Line

Selection Criteria As existing case studies for comparing LPL engineering ap-
proaches limit themselves by excluding machine code generation, I aim to iden-
tify other programming languages, from which a suitable family of programming
languages can be derived. To select a suitable programming language candidate,
I consider the following selection criteria:

i) The language shall comprise the typical language constructs of program-
ming languages, e.g., primitive types, expressions, control structures, vari-
ables, functions, or language concepts, e.g., type checking, coercion, name
resolution, and recursion.

ii) The language shall be statically typed and reject any program with errors
in its syntax and semantics.

iii) The language shall be compiled to machine code, e.g., RISC machine code,
rather than source code or object code, to consider all phases of a compiler.

iv) It should be feasible for a single researcher to implement the language in a
limited time frame.

v) The language specification shall be concise, complete, and publicly available.

In essence, these criteria ensure that the selected family of languages includes
the fundamental problems of compiler construction (i), requires checking both a
5 This evaluation method would be correctly classified as case study according to the
empirical standards of software engineering [42].
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program’s syntax and semantics (ii), and copes with the generation of machine
code (iii). In addition to that, I maintain that for a language to be implemented
for a case study, researchers must be able to feasibly realize its compiler, i.e., it
must be manageable to implement the compiler in a month (v). Last but not
least, the specification of the language should be short, easy to understand, and
freely available.

LAX as a Programming Language Candidate Using these selection cri-
teria, I have selected the Sample Programming Language (LAX), designed by
Waite and Goos [50], as a suitable candidate. In accordance with the five selec-
tion criteria, (i) LAX was specifically designed to encompass the fundamental
concepts of a programming language without uninteresting complications. The
language constructs range from primitive types and expressions via records and
arrays to pointers and functions, whereas language concepts include, among oth-
ers, coercion, recursion, and nested scopes. Second, (ii) LAX has a simple static
type system and explicitly specifies which errors must be detected during se-
mantic analysis. Third, (iii) LAX’s semantics is still simple enough to be easily
translatable to RISC machine code, i.e., MIPS [21]. This, in turn, requires LPL
approaches to consider code generation. Fourth, (iv) LAX is a concise language
that should be easy to implement, especially, for researchers in the field of com-
piler construction. While the development time might vary, I assume that a LAX
compiler could be developed by one person in a month. Last but not least, (v) the
language specification of LAX is concise, complete, and publicly available [50,
Appendix A]. The upshot of all this is that LAX is a suitable candidate if a
language family can be derived from it.

Now, the reader might object that LAX is not an object-oriented language.
While I concede that LAX does not support inheritance or polymorphic dispatch,
the language features of instantiable records and procedure/function pointers are
at the core of every object-oriented language, albeit rarely visible. The challenges
for machine code generation, however, remain the same.

Incremental Compiler Construction of LAX When designing a family
of languages from an existing programming language, I followed a hybrid LPL
approach instead of a pure top-down or bottom-up approach [Cazzola16i]. In
particular, instead of decomposing an existing LAX compiler into language com-
ponents, I followed a reactive SPL approach [3, Cha. 2.4], starting from a feature-
minimal LPL and incrementally adding new language features. Fortunately, this
process was aided by the existence of an incrementally developed LAX compiler,
initially developed by W. Zimmermann in 2015.

Applying and teaching incremental compiler construction, as proposed by
Basil and Turner [4], W. Zimmerman devised a corresponding practical course
at Martin-Luther University Halle-Wittenberg.6 Within this course, students
6 The module description is available here: https://studip.uni-halle.de/
dispatch.php/shared/modul/description/8b1a2667b293f0e4d61b7a524277e842/
?display_language=EN
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Table 1: Overview of the increments for implementing LAX derived from the
practical course on compiler construction by W. Zimmermann.
# Introduced Language Features # Introduced Language Features

0.0 expressions with integer constants 0.23 switch case expressions
0.1 integer addition + 0.24 while loops
0.2 integer subtraction - 0.25 for loops
0.3 integer multiplication * 0.26 declaration of record types
0.4 integer division / 0.27 field access of record types
0.5 unary + (integer) 0.28 object instantiation new
0.6 unary - (integer) 0.29 pointer types ref
0.7 expressions in brackets 0.30 pointer comparison ==
0.8 declaration of constants and read access 0.31 dereference ˆ operator
0.9 declaration lists 0.32 variables with 1-dimensional array types and ar-

ray access
0.10 datatype boolean 0.33 variables with n-dimensional array types and ar-

ray access
0.11 comparison operators < and > 0.34 general array types
0.12 equality operator = 0.35 procedures without parameters and proc. call
0.13 declaration of variables and read access 0.36 one proc. parameter with atomic type and proc.

call
0.14 assignment 0.37 one proc. parameter with composite type and

proc. call
0.15 assignment lists 0.38 multiple proc. parameters and proc. call
0.16 datatype real, operators, and coercion 0.39 function with atomic return type
0.17 real division (with /) 0.40 function with composite return type
0.18 blocks 0.41 procedure/function pointer, assignment and com-

parison
0.19 if then else expressions 0.42 deproduction of procedure/function pointer
0.20 boolean negation not 0.43 argument passing for procedure/function pointers
0.21 conjuction and with short evaluation 0.44 procedure/function pointer as return types
0.22 disjunction or with short evaluation 0.45 unconditional jumps goto

are tasked to incrementally develop a compiler for LAX employing the compiler
construction tool Eli [20]. Initially, the students are provided with a working
language version 0.0 with all Eli specifications and auxiliary functions written
in C. During the course, they implement a new language version each week by
implementing a language feature into the previous language versions. The course
follows the iteration plan, outlined in Table 1. These increments were meticu-
lously planned and refined by W. Zimmerman, such that later increments require
minimal changes to the existing implementation. Although most students only
reach language version 0.23, for each language version there exists a reference
implementation that was incrementally developed as well as a staggering amount
of 708 980 096 positive and negative test cases programmatically generated for
each increment.

I employed both the iteration plan (cf. Table 1) and a file diffing tool to
investigate commonalities and differences between the 46 language versions. To
eliminate the implicit dependency from a language version to all previous ver-
sions, I determined to which of the previous language versions a dependency
exists. The resulting partial order of increments represents both the dependen-
cies among language features from which I derive both a feature model and
candidates for language components from which a reference LAX LPL can be
implemented.

105



Towards a Holistic Case for Comparing Language Product Line Approaches 9

Fig. 2: Feature model for the types of the family of LAX languages without
cross-tree constraints.

Variability Model of the Family of LAX Languages Based on the anal-
ysis of the dependencies among the language features, I was able to design a
feature model for the family of LAX programming languages. The resulting fea-
ture model is depicted in Figure 2 and Figure 3. The feature model encompasses
78 concrete and 8 abstract features. In detail, Figure 2 highlights that a LAX
variant must at least select one of the types. Once a type is selected, the cor-
responding literals, semantics, and machine code generation should be added.
The child features of each of the types denote operators that can occur in an
expression of that type. For brevity, I omitted the 8 child features of real, as this
datatype has the same operators as the integer feature. In contrast, Figure 3
emphasizes the remaining language constructs and concepts. The language con-
structs cover different kinds of statements and declarations. The former covers
both conditional expressions and loops, whereas the latter covers declarations
for the corresponding types, e.g., variable, reference, or procedure declarations.
As the feature model was not expressive enough to capture all identified feature
dependencies, I added 14 cross-tree constraints, listed in Figure 4. The con-
straints (1)–(6), for instance, ensure that if a comparison operator, a conditional
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Fig. 3: Feature model for the language constructs and concepts of the family of
LAX languages without cross-tree constraints.

expression, or a loop statement is selected, then the required primitive datatype
is selected as well. Similarly, the constraints (8–12) ensure that the types exist if
a corresponding declaration is selected. In sum, the variability described by the
feature model and cross-tree constraints is extensive, yielding more than 500000
valid feature configurations.7 The feature model not only covers the versions of
LAX, discussed in section 3.1, but also a plethora of language specializations,
e.g., LAX with functions yet only the boolean datatype and corresponding oper-
ators and expressions. Consequently, LAX version 0.45 corresponds to a feature
complete variant of the family of LAX languages, namely the original LAX pro-
gramming language.

Towards a Reference Implementation of a LAX Language Product
Line Up to this point, I have only captured the feature model and candidates
for language components, but not a decomposition of the language. While one

7 This is an estimation computed by FeatureIDE [33].
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i_comparison ∨ i_equality⇒boolean (1)
r_comparison ∨ r_equality ∨ a_equality⇒boolean (2)

p_equality ∨ p_ref_equality⇒boolean (3)
if_then_else ∨ while⇒boolean (4)

switch_case⇒integer (5)
for⇒integer (6)

instantiation ∨ dereference⇒pointer (7)
block⇒declarations (8)
record⇔record_decl (9)

proc_reference_decl⇒procedure_decl (10)
reference_decl⇒pointer (11)

array_reference_decl⇒array (12)
widen⇒integer ∧ real (13)

deprocedure⇒return_type (14)

Fig. 4: Additional cross-tree constraints for the feature model shown in Figure 2
and Figure 3.

might think that this suffices as a case study, for a suitable quantitative eval-
uation method, a reference implementation is required. This will permit the
generation of the different language variants, programs for these language vari-
ants, as well as corresponding machine code. This is a considerable undertaking,
especially, as I intend to avoid the application of an existing language workbench
suitable for LPLs, e.g. [5, 17]. To mitigate the language development effort and
the introduction of bias, I intend to reuse most of the Eli specifications and
implementations of the incrementally developed LAX version (cf. section 3.1).
Moreover, I will employ one of the first variability implementation techniques,
i.e., preprocessor annotations [3, Cha. 5.3]. While this technique does not permit
the creation of language components, it can be uniformly employed to implement
variability throughout all Eli-specific files and auxiliary implementations writ-
ten in C. I can simply employ the C-preprocessor to derive a compiler for the
language variant by defining the involved language features. I aim to complete
the development of the reference implementation of the LAX LPL by the end of
next year.

Besides that, I focus on the extension of the existing black-box test suite
generated for the different language versions. As it is infeasible to exhaustively
test all valid language configurations, I am to adapt the test suite to generate
test cases for specific language features in a given language context, i.e., a valid
language configuration. In detail, I will annotate the language features present
in each generate test case as well as whether it is a positive or negative test for
this feature. This, in turn, permits me to employ SPL testing methods, such as
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sample based testing that is based on language features [3, Cha. 10.3.2] or delta-
based testing that is based on language increments [32]. The resulting black-box
test suite mirrors the variability of the LAX LPL to permit the creation of
tailored positive and negative test cases.

3.2 Goals, Questions, and Metrics for Comparing Language
Product Line Engineering Approaches

The family of LAX language represents the common case that should be real-
ized using the various LPL engineering approaches. However, to evaluate each
individual realization and subsequently compare different realizations, suitable
measurements must be defined beforehand. Instead of blindly picking measure-
ments, I followed the goal question metric (GQM) approach [7], to define the
goals of the evaluation, the evaluation questions, and corresponding measure-
ments (or metrics) taken from an LPL realization.

The GQM approach was promoted by Caldiera and Rombach [7] to improve
the collection of empirical data in software engineering research. Their approach
emphasizes that the evaluation of a system under study should be driven by
goals, questions, and metrics. Goals clearly state the particular goal of the
evaluation wrt. the system under study. Assigned to each goal are questions that
characterize the viewpoint of the system under study to achieve the evaluation
goal. In turn, for each question, the approach selects a number of metrics that
subjectively or objectively quantify a property of the system under study relevant
to answering the evaluation question. Employing this approach ensures a top-
down, goal-oriented evaluation of the systems under study [7].

For the proposed comparison of the LPL realizations of the LAX language
family, I propose the following GQM plan:

– G1: Variability coverage of the LPL realization
• Q1: Does the LPL realization correctly derive compilers for all lan-

guage variants of the LAX family?
∗ M1: Fraction of valid configurations for which a compiler could

be derived.
∗ M2: Sum of false included language features in derived compilers.

– G2: Syntactic validity of derived compilers
• Q2: Does the derived compiler only accept programs belonging to a

language variant?
∗ M3: Fraction of accepted (semantic correct) programs belonging

to the language variant.
∗ M4: Fraction of rejected programs of the language variant with

injected syntax errors.
∗ M5: Number of unselected language features that are accepted

by the derived compiler when occurring in a program of another
language variant.

– G3: Semantic validity of derived compilers
• Q3: Does the derived compiler correctly check the static semantics of

programs belonging to a language variant?
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G1: Variability Coverage

Q1:LPL can derive compilers for
all language variants?

M1: Frac. of compilers for valid
configurations

M2: Sum of false included
features

G2: Syntactic validity

Q2: Derived compiler only
accept programs of language
variant?

M3: Frac. of accepted programs

M4: Frac. of rejected programs
with injected syntax errors

M5: Num. of unselected
language features still accepted

G3: Semantic validity Q3: Derived compiler correctly
check static semantics?

M6: Frac. of rejected programs
with injected semantic errors

G4: Generation validity
Q4: Derived compiler generates
equivalent machine code from
programs?

M7: Frac. of programs run with
correct result

M8: Frac. of programs that yield
invalid machine code

Fig. 5: Overview of GQM plan for the evaluation of LPL realizations.

∗ M6: Fraction of rejected programs of the language variant with
injected semantic errors.

– G4: Generation validity of derived compilers
• Q4: Does the derived compiler generate equivalent machine code for

programs belonging to a language variant?
∗ M7: Fraction of programs of the language variant whose gener-

ated MIPS code yields the correct result.
∗ M8: Number of programs of the language variants that when

compiled yield invalid MIPS machine code.

This plan, summarized in Figure 5, focuses on four main evaluation goals,
whereas the first goal investigating whether the LPL realization covers the vari-
ability of the feature model (G1) leads to the three remaining goals investigating
the correctness of the derived compiler for a particular language variant wrt. the
syntax analysis (G2), semantic analysis (G3) and finally machine code generation
(G4). For each goal, a corresponding evaluation question considers the programs
of a language variant (with and without errors). Simply put, I will employ the
test suite for the LAX LPL to derive suitable test samples to answer each evalu-
ation question. Finally, the metrics M1 to M8 represent objective measurements
that ensure that the LPL realization (under study) correctly realizes the fam-
ily of LAX programming languages. Note that the metric M2 accumulates the
results of metric M5.

Please note that I intentionally left out objective performance metrics, e.g.,
measuring the compiler derivation time, compilation performance or perfor-
mance of the resulting programs, as I regard this as an unimportant property,
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especially at the current maturity of LPL engineering approaches. Granted, these
measurements could be easily included into the GQM plan, including counting
the number of generated MIPS instructions. Similarly, I avoided the temptation
to compare the lines of code or implementation time of LPL realizations. Fol-
lowing Kelly [24] argument, these are unsuitable for quantitative comparisons
unless an objective metric can be found.

4 Conclusion

In this paper, I have presented my preliminary results towards the creation of an
evaluation method for comparing LPL engineering approaches. I aimed to both
identify a suitable language family as a common case and design a quantitative
evaluation method for such a comparison. I have identified LAX as a suitable
candidate for a holistic family of programming languages (RQ1). For this candi-
date, I have investigated the dependencies among language features to derive a
feature model for the family of LAX programming languages. In addition, I dis-
cussed how I intend to develop a reference implementation of a LAX LPL using
Eli and the C-preprocessor. Afterward, I have proposed a method for comparing
LPL realizations based on the goal question metric (GQM) approach (RQ2). In
detail, I selected four evaluation goals and corresponding evaluation questions
that aim to evaluate whether the LPL and derived compilers for each language
variant correctly implement the family of LAX programming languages. To an-
swer the evaluation questions, I provided eight metrics that all consider programs
of individual language variants. Although I argued that both the case and the
GQM plan are suitable, I concede that objects, inheritance, and polymorphism
are language features missing in LAX and that the presented GQM plan neglects
all indicators for performance and implementation effort.

Consequently, in the future, I will investigate the language features of Sather-
K [19] to define reusable language components for objects, inheritance, and poly-
morphism that could be added to LAX. Moreover, I study the literature looking
for information theoretic metrics for code complexity as an objective measure
of development effort. Last but not least, once the reference implementation of
the LAX LPL is completed, I will start evaluating existing LPL engineering
approaches, e.g. [5, 17].
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Abstract. Dynamic Pushdown Networks (DPNs) are a model for mul-
tithreaded programs with recursion and dynamic creation of threads. In
this talk, we propose a temporal logic called Navigation Temporal Logic
(NTL) for reasoning about the call- and return- as well as thread creation
behaviour of DPNs. Using tree automata techniques, we investigate the
model checking problem for the novel logic and show that its complexity
is not higher than that of LTL model checking against pushdown sys-
tems despite a more expressive logic and a more powerful system model.
The same holds true for the satisfiability problem when compared to
the satisfiability problem for a related logic for reasoning about the call-
and return-behaviour of pushdown systems. Overall, this novel logic of-
fers a promising approach for the verification of recursive programs with
dynamic thread creation.
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Abstract. Hyperproperties [3] have received increasing attention in the
last decade due to their importance e.g. for security analyses. As tradi-
tional specification logics like LTL are unsuitable for the specification
of hyperproperties, new hyperlogics were developed. Past hyperlogics
like HyperLTL [2] have been developed with a synchronous semantics in
which different traces are compared lockstepwise. While this approach
may be suitable for the verification of hardware systems, this is not the
case for software systems whose behaviour is inherently asynchronous.
For example, when checking information-flow policies on concurrent pro-
grams, traces might only be required to be equivalent up to stuttering
[5] and thus matching observation points on different traces are not per-
fectly aligned. Another drawback of past approaches to model checking
of hyperproperties is that they have focussed on finite models which can-
not capture many programs suitably due to the lack of a representation
for the call stack.
In this talk, we present two temporal logics for asynchronous hyperprop-
erties in order to address these problems. First, we present the temporal
fixpoint calculus Hµ [4], the first fixpoint calculus that can systemat-
ically express hyperproperties in an asynchronous manner and at the
same time subsumes the existing hyperlogic HyperLTL. We investigate
the model checking problem for the logic on finite models which is in gen-
eral highly undecidable due to the high expressive power of the logic. As
a remedy, we propose approximate analyses that induce natural decid-
able fragments. Secondly, we present the logic mumbling Hµ, a sublogic
of Hµ, that handles asynchronicity via a mechanism to identify relevant
positions on traces. While the new logic is more expressive than a related
logic presented recently by Bozzelli et al. [1], we obtain the same com-
plexity of the model checking problem for finite state models. Beyond
this, we solve the model checking problem of the logic for pushdown
models by introducing a concept called well-alignedness that requires
the traces under consideration to have a similar call-return behaviour.
This approach thus not only complements the decidable fragments of
Hµ, it also provides one of the first approaches to the verification of
hyperproperties on infinite state systems.
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Abstract. Mutation testing is a powerful software testing method in

which the program under test is seeded with arti�cial faults that are

considered to be possible programming errors and should be discovered

by a high-quality test suite. The cost of mutation testing is one of the

most critical issues for its practical applications. In this thesis, we present

the tool muttest for mutation analysis of Rust programs that improves

quality and performance of mutation analysis compared to related sys-

tems.

This thesis proposes several methods for leveraging Rust language fea-

tures and results of static analysis to implement mutation operators while

preventing the generation of invalid mutations. Moreover, dynamic pro-

gram analysis is used to perform weak mutation analysis and its results

are utilized to improve the performance of strong mutation analysis. By

relying only on stable features of Rust, we ensure best-possible compati-

bility of muttest with future versions of Rust. The experimental evalua-

tion in this thesis shows that muttest has competitive performance and

produces a high-quality mutation analysis report.

Keywords: software correctness · software testing · mutation testing ·

weak, strong mutation analysis · static, dynamic program analysis · Rust
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Abstract. Java-TX (TX standing for Type eXtended) is an extension
of Java. The predominant new features are global type inference and real
function types for lambda expressions. Since that time the type inference
algorithm consists of two steps, the tree traversing and the type unifica-
tion. During traversing of the abstract syntax tree type constraints are
built. These type type constraints are solved by the type unification. The
result of the type unification is a set of pairs of a set of remaining con-
straints consisting only of two type variables and a general type unifier.
Since that time the remaining constraints are not considered in detail.
In this paper we consider these constraints. The constraints become to
bound type variables of the corresponding classes and its methods, re-
spectively. The goal is that the classes and the methods become a prin-
cipal type, respectively. In a first step each type variable is mapped to a
class or a method. After that some bounds are added which are induced
by method calls. Finally cycles and infima of the constraints are erased
as they are not allowed in Java.

1 Introduction

Since version 1.5 the programming language Java has been extended by incorpo-
rating many features from functional programming languages. Version 1.5 [2] saw
the introduction of generics. Generics are known as parametric polymorphism
in functional programming languages.
In Java 8 [3] lambda expressions were introduced, but not real function types.
The types of lambda expressions are defined as target types, which are functional
interfaces (essentially interfaces with one method). In Java-TX we added real
function types [6]
Local type inference was introduced in the versions five, seven, and ten. In Java
5.0 the automatic determination of parameter instance was introduced. In Java
7 the diamond operator was introduced. In Java 10, finally, the var keyword for
types of local variables was introduced [1]. In Java-TX local type inference is
enlarged to global type inference [5].
Our type inference algorithm consists since that time of two funtions tree travers-
ing and type unification.
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In this paper we add a third function generate generics. The basic idea is to
transfer the remaining type variables of the type unification to type parameters
(gererics) of the classes and the methods, respectively.
The paper is organizes as follows: In Section 2 we give a short summary of the
type inference algorithm. In section 3 the function generate generics is intro-
duced. Finally, we close with a summary and an outlook.

2 Global type inference for Java-TX

Global type inference allows us to leave out all type annotations. As in func-
tional programming languages like Haskell, the compiler similarly determines a
principal typing, such that Java-TX is statically typed as original Java. Let us
first consider a simple example.

Example 1. Let the class Fac be given.
import java.lang.Integer;

c lass Fac {
getFac(n){

var res = 1;
var i = 1;
while(i<=n) {

res = res * i;
i++;

}
return res; }

}

It is the simple iterative implementation of the factorial function. The return
and the argument type of getFac are left out. The type inference algorithm has
to infer the types. The types are determined by the declaration of res and the
operator *. In order to reduce the complexity of the type inference algorithm
for overloaded operators in the same way as for overloaded methods, only types
are inferred which are explicitly imported by the keyword import. Therefore in
getFac only the type java.lang.Integer is inferred.

2.1 The type inference algorithm

The input of the type inference algorithm is the abstract syntax tree of the
corresponding Java-TX class, without type annotations:

Class( cl, extends( ty ), f ,Method(m1, v1, bl1 ) . . .Method(mn, vn, bln ) )

The result of Java-TX type inference is fully typed Java-TX-class:

Class( cl, gencl, extends( ty ), fty f,
Method( gen1, rty1,m1, v1 : ty1, bl1 )
. . .
Method( genn, rtyn,mn, vn : tyn, bln ) )

121



The type inference algorithm consists of three steps: tree traversing, type unifi-
cation, and generate generics.
In this section we summarize briefly the first two steps. For more details we refer
to [5,4,7]. The main topic of this paper is the third step generate generics which
we consider in the next section.

Tree traversing: In a traversing of the abstract syntax tree, a type is mapped
to each node of the methods’ statements and expressions. If the correspond-
ing types are left out, a type variable is mapped as type placeholder. Other-
wise, the known type is mapped.
During the traversing a set of type constraints { ty ⋖ ty′ } is generated. The
constraints represent the type conditions as defined in the Java specification
[3]. For more details see the function TYPE in [5].

Type unification: For the set of type constraints { ty ⋖ ty′ } general unifiers
(substitution) σ are demanded, such that

σ( ty1 )≤∗ σ( ty′ ).

The result of the type unification is a set of pairs

({ (T ⋖ T ′) }, σ),

where { (T ⋖ T ′) } is a set of remaining constraints consisting of two type
variables and σ is a general unifier.
The type unification algorithm is given in [4,7]. There we proved that the
unification is indeed not unitary, but finitary, meaning that there are finitely
many general unifiers.

Let us consider the application of the type inference algorithm to the factorial
example (Example 1). Note that we omit the import statements for the sake of
readability in the further examples.

Example 2. First, we present the essential type variables which are mapped to
nodes of the method getFac:

c lass Fac {
N getFac(O n) {

P res = 1;
R i = 1;
while((i::R) <= (n::O))::T {

(res::P)=(( res::P)*(i::R))::U ;
(i::R)++;

}
return(res::P);

}
}

The generated constraints are
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{ (P ⋖N ), (U ⋖ P),
(O ⋖ java.lang.Number), (R ⋖ java.lang.Number), (java.lang.Boolean

.
= T ),

(java.lang.Integer
.
= U ), (R⋖java.lang.Integer), (P⋖java.lang.Integer) }

The result of type unification is given as:

{ (∅, [(U 7→ java.lang.Integer),
(P 7→ java.lang.Integer), (R 7→ java.lang.Integer),
(O 7→ java.lang.Integer), (N 7→ java.lang.Integer),
(T 7→ java.lang.Boolean)] }

In this example, no constraints consisting only of type variables remain. Fur-
thermore, there is only one general unifier.
If we instantiate the type variables by the determined types, we get:

c lass Fac {
Integer getFac(Integer n) {

Integer res = 1;
Integer i = 1;
while((i::Integer) <= (n::Integer))::Boolean {

(res::Integer) =
((res::Integer) * (i::Integer))::Integer;

(i::Integer)++;
}
return(res::Integer);

}
}

The set of remaining constraints which consist only of type variables is empty.
If this set would not be empty, then type parameters (generics) of the class or
of its method would be generated. We consider this in Section 3.

3 Generalized type variables

In a similar way as in type inference of functional programming languages, free
type variables which are not instanced by other types after type inference are
generalized to generics. In comparison to functional programming languages, in
Java subtyping leads to a more powerful generalization mechanism.
Keeping in mind the result of the type unification (Sec. 2.1)

{ ({T1 ⋖ T ′
1 }, σ1), . . . , ({Tn ⋖ T ′

n }, σn) }.

given as a set of pairs of

– remaining constraints consisting only of pairs of type variables {Ti ⋖ T ′
i }

and a
– most general unifier σi.
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c lass TPHsAndGenerics {

id = x -> x;

id2 (x) {
return id.apply(x);}

m(a, b){
return b; }

m2(a, b) {
var c = m(a,b);
return a; }

}

c lass TPHsAndGenerics {
Fun1$$<UD, ETX>

id = (DZP x) -> x;

ETX id2(V x) {
return id.apply(x);}

AI m(AM a, AN b){
return b; }

AA m2(AB a, AD b){
AE c = m(a,b);
return a; }

}

Fig. 1. Class TPHsAndGenerics before and after tree traversing

In the previous section we considered the unifiers. In this section we shall consider
the remaining constraints. In the existing type inference algorithm of functional
programming languages without subtyping (e.g. Haskell or SML) the remaining
type variables are generalized such that any type can be instantiated if the
function is used.
Following up this idea, the remaining type variables become bound type pa-
rameters of the class and its methods, respectively, where the left-hand side of a
constraint is a type parameter and the right-hand side is its bound. Additionally,
due to the Java restrictions of type parameters, some type parameters have to
be collected to one new type parameter.
This section is structured as follows: After a motivating example, we present
an apportioning of the type variables to the class and its methods. We then
reduce the respective set of type variables such that the Java restrictions of type
variables are fulfilled.

Let us start with a motivating example.

Example 3. On the left side in Fig. 1 a Java-TX program is given. The identity
function is mapped to the field id. In the method id2 the identity function is
called. In the method m2 the method m is called.
The application of the tree traversing step is presented on the right side where
we leave out inner type variables. The result of the type unification is { (cs, [ ]) }
where the remaining set of constraints of the type is:

cs = { AD⋖ AN, AN⋖ AI, V⋖ UD, AI⋖ AE, AB⋖ AM,DZP⋖ ETX, UD⋖ DZP }.
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3.1 Family of generated generics

We divide up the set of remaining constraints cs by transferring it to bound type
variables of the class and each method of the class, respectively. Therefore we
build a family of generated generics FGG where the index set is given as the
class name and its method names.

Definition 1 (Family of generated generics). The family of generated gener-
ics is defined as

FGG = (FGGin)in∈CLM,

where
CLM = { cl } ∪ {m |m is method in cl }

is the index set of the class name and its methods’ names.
Let cs be a set of remaining constraints as result of the type unification. cs is
transferred to the family of generated generics FGG where, the set of generated
generics of the class FGGcl are given as:

– all type variables of the fields with its bounds, including the initializers
– the closure of all bounds of type variables of the fields with its bounds, and
– all unbound type variables of the fields and all unbound bounds with Object

as bound.

The set of generated generics FGGm of its methods m: are given, respectively,
as:

– the type variables of the method m with its bounds, where the bounds are also
type variables of the method,

– all type variables of the method m with its bounds, where the bounds are type
variables of fields and

– all unbound type variables of the method m and all type variables of m which
bounds are not type variables of m with Object as bound.

We present the family of generated generics for the class TPHsAndGenerics from
Example 3

Example 4. The set of remaining constraints

cs = { AB⋖ AA, AD⋖ AN, AN⋖ AI, V⋖ UD, AI⋖ AE, AB⋖ AM,DZP⋖ ETX, UD⋖ DZP }

of the class TPHsAndGenerics results in the family of generated generics.
The set of generated generics FGGTPHsAndGenerics of the class:

– Type variables of the fields with its bounds:
{ UD ⋖ DZP }

– Closure of all bounds of type variables of the fields with its bounds:
{ DZP ⋖ ETX }
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c lass TPHsAndGenerics
<UD extends DZP, DZP extends ETX, ETX> {

Fun1$$<UD, ETX> id = x -> x;

<V extends UD> ETX id2(V x) {
return id.apply(x);}

<AM, AN extends AI, AI> AI m(AM a, AN b){
return b;}

<AA, AB extends AA, AD, AE> AA m2(AB a, AD b){
AE c = m(a,b);
return a;}

}

Fig. 2. Generated generics of the class TPHsAndGenerics

– All unbound type variables of the fields and all unbound bounds with Object
as bound:

{ ETX ⋖ Object }

The set of generated generics FGGid2:

– All pairs where the bounds are type variables of fields:
{ V⋖ UD }

The set of generated generics FGGm:

– The type variables of the method m with its bounds, where the bounds are
also type variables of the method:

{ AN⋖ AI }
– All unbound type variables of the method m with Object as bound:

{ AM⋖ Object, AI⋖ Object }

The set of generated generics FGGm2:

– The type variables of the method m with its bounds, where the bounds are
also type variables of the method:

{ AB⋖ AA }
– All unbound type variables of the method m and all type variables of m which

bounds are not type variables of m with Object as bound:
{ AD⋖ Object, AE⋖ Object }

The mapping of the family to the class and its methods in the Java-TX program
is presented in Fig. 2, where the bounds Object are left out.
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This is not yet a correct Java-program. In the method m2 the type AD of the
second parameter b of the method-call of m must be a subtype of the type AE of
the local variable c, as in the method m the argument type AN is subtype of the
return type AI. We address this problem by extending the family of generated
generics to the completed family of generated generics.

Definition 2 (Completed family of generated generics). Let cs be the re-
maining constraints after unification and FGG be the family of generated gener-
ics. The completed family of generated generics CFGG is defined as

– CFGGcl = FGGcl

– CFGGm coresponds to FGGm where Ti ⋖ Object is substituted by T ⋖ R
for each method call

rec :: cl.m′(e :: ty) :: rty

in the method m with the signature ty
′→rty′ where T ∈ TVar( tyi ), T ′ ∈

TVar( ty ′
i ), R′ ∈ TVar( rty ′ ), R ∈ TV( rty ), T ⋖ T ′ ⋖∗ R′ ⋖ R is in the

transitive closure of cs, and T ′ ⋖∗ R′ is in the transitive closure of CFGGm′ ,

Example 5. In the completed family of generated generics of the class TPHsAndGenerics
in the set of generated generics FGGm2 the bound of AD is changed from Object
to AE:

{ AD⋖ AE }
as the method m is called in m2:

AE c = m( a :: AB , b :: AD ),

AD ⋖∗ AN ⋖∗ AI ⋖∗ AE is in the transitive closure of cs, and AN ⋖∗ AI is in the
transitive closure of FGGm.

The algorithm to build the completed family of generated generics (Def. 1) cor-
responds to Def. 1.

Algorithm 1 (Completed family of generated generics)

Input: Family of generated generics FGG
Output: Completed family of generated generics CFGG

Foreach element FGGm of the family of generated generics determine the com-
pleted family of generated generics CFGGm with the following algorithm:

1. If CFGGm is not initialized
– Initialize CFGGm = FGGm

– Mark any recursive method call of m in the method m
2. For each not marked method call

rec :: cl.m′(e :: ty) :: rty

in the method m with the signature ty
′→rty′ and foreach T ∈ TVar( tyi ),

T ′ ∈ TVar( ty ′
i ) with T ⋖ T ′ element of the transitive closure of cs {
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– Mark any method call m′ in m
– CFGGm′ is the result of the recursive call of the algorithm for FGGm′

– If R′ ∈ TVar( rty ′ ), R ∈ TV( rty ), T ⋖ T ′ ⋖∗ R′ ⋖R is in the transitive
closure of cs, and T ′ ⋖∗ R′ is in the transitive closure of CFGGm′

add (T ⋖ R′) to CFGGm.
}

It is obvious that the algorithm terminates after all method calls are marked.

Lemma 1. The algorithm 1 is correct.

Proof. A relationship between an input type variable and an output type variable
cannot be derived from a (mutual) recursive call of the method. Therefore on the
one hand direct recursive calls are leaved out, induced by the marking during
initialization.
One other hand for indirect recursive calls the algorithm to determine CFGGm

is called twice if the methods m and m′ are mutual recursive. In the second
determination of CFGGm the first method call of m′ is leaved out as it is
marked.

We give an example where two methods are mutual recursive.

Example 6. Let the class Mutual with the inferred types be given.

c lass Mutual {
Pair <BB,DD> m1(B x, C y) {

D y2 = m2(x, y).snd ();
return new Pair <>(id(x),y2);

}

Pair <HH,GG> m2(F x, G y) {
H x2 = m1(x, y).fst ();
return new Pair <>(x2, id(y));

}

I id(J x) {
return x;

}

}

Furthermore, the set of remaining constraints is given as
cs = { B⋖ J, J⋖ I, I⋖ BB, B⋖ F, C⋖ G, G⋖ J, I⋖ GG, F⋖ B, G⋖ C, GG⋖ D, BB⋖ H }

The family of generated generics is given as:
FGGm1 = { B⋖ Object, C⋖ Object, D⋖ DD, DD⋖ Object, BB⋖ Object }
FGGm2 = { F⋖ Object, G⋖ Object, H⋖ HH, HH⋖ Object, GG⋖ Object }
FGGid = { J⋖ I, I⋖ Object }

Determination of the completed family of generated generics:
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1. CFGGm1 = FGGm1

2. Method call m2 with ty = (B, C) and ty
′
= (F, G)

Mark the method call m2
1. CFGGm2 = FGGm2

2. Method call m1 with ty = (F, G) and ty
′
= (B, C)

Mark the method call m1
1. CFGGm1 is initialized
2. Method call m2 is marked

Method call id with ty = B and ty
′
= J

Mark the method call id
1. CFGGid = FGGid

2. no method call
As B⋖ J⋖ I⋖ BB ∈ cs and J⋖ I ∈ CFFGid

add (B⋖ BB) to CFGGm1

As F⋖ B⋖ BB⋖ H ∈ cs and B⋖ BB ∈ CFFGm1

add (F⋖ H) to CFGGm2

Method call id with ty = G and ty
′
= J

Mark the method call id
1. CFGGid is initialized
2. no method call

As G⋖ J⋖ I⋖ G′ ∈ cs and J⋖ I ∈ CFFGid

add (G⋖ GG) to CFGGm2

As C⋖ G⋖ HH⋖ D ∈ cs and G⋖ HH ∈ CFFGm2

add (C⋖ D) to CFGGm1

Method call id is marked

This leads to the result:

c lass Mutual {
<B extends BB , BB , C extends D, D extends DD , DD >
Pair <BB,DD> m1(B x, C y) {

D y2 = m2(x, y).snd();
return new Pair <>(id(x),y2);

}

<F extends H, H extends HH , HH , G extends GG , GG >
Pair <HH,GG> m2(F x, G y) {

H x2 = m1(x, y).fst ();
return new Pair <>(x2, id(y));

}

<J extends I, I> I id(J x) {
return x;

}
}

In the following section we transform the completed family of generated generics
to Java generics of the class and its methods, respectively.
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3.2 Java-conforming binary relation of type parameters

We have to reduce the completed family of generated generics:

– The subtyping hierachy is an ordering. Therefore cyles have to eliminated.
– Java allows no multiple inheritance. Therefore infima have to be eliminated.
– As Object is a supertype of each class-type sometimes suprema can leaved

out. In these cases during the call Object as supremum is inferred.
– The argument types of methods are contravariant und return types are co-

variant. Therefore some type arguments and return types can be equalized
without loosing the principalty of the type.

In the following two sections we transform the family of generated generics to
Java class and method generics, respectively. First we eleminate cyles. After that
we eliminate infima and give some simplifications.
The set of remaining constraints cs as well as any element of the completed
family of generated generics CFGGm are arbitrary binary relations.
There are two conditions in Java that all members of the completed family of
generated generics have to fulfill:

– The reflexive and transitive closure of its have be a partial ordering as the
subtyping relation in any Java program is a partial ordering.

– Two different elements have no common infimum as multiple inheritance is
prohibited in Java.

Furthermore there are some inferred type variables that can be leaved out with-
out hampering the prinipality of the types.
The general approach is to equalize type variables by a surjective map h that
preserves the subtype relation:
For T ⋖∗ T ′

h(T ) ⋖∗ h(T ′ )
holds true.

Removing cyles Considering the following lemma:

Lemma 2. The reflexive and transitive closure of any binary relation is a partial
ordering if it contains no cycle.

Proof. A partial ordering is binary relation with the properties reflexivity, tran-
sitivity, and antisymmetry. The first two properties are given as we consider a
reflexive and transitive closure. Therefore a reflexive and transitive closure is no
partial ordering only if the property antisymmetry is not given. Antisymmetry
is given if and only if there are no cycles.

This means that we have to eliminate cycles. We will do this by a surjective
mapping of connected type variables to a new type variable.
First, we shall consider an example.
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Example 7 (Cycle). Let the class Cycle be given:

c lass Cycle {
m(x, y) {

y = x;
x = y;

}
}

For the inferred method parameter m(L x, M y) we get

CFGGm = { (L⋖M ), (M ⋖ L) }

But

<L extends M,M extends L> void m(L x, M y) {...}

is not a correct declaration.

We shall now present an algorithm which eliminate cycles.

Algorithm 2 (Remove cycles)

Input: A member of the completed family of generated generics C.
Output: An adapted member of the family of generated generics C ′ and a sur-

jective mapping h that describes the adaption of C.
Postcondition: For T ⋖∗ T ′ ∈ C and T ′ ⋖∗ T ∈ C holds true h(T ) = h(T ′ )

and for T ⋖∗ T ′ ∈ C and T ′ ⋖∗ T ̸∈ C holds true T ⋖∗ T ′ ∈ C ′

For any (T ⋖K ⋖G ⋖ ...⋖ T ) in C:
– Substitute all type variables of the cycle with a new type variable X in C.
– Remove all constraints with elements of the cycle from C.
– In h all removed type variables of the cycle are mapped to X.
– For any element U ⋖ Cy and Cy ⋖ U ′ with an element of the cycle Cy ∈

{T ,K ,G , . . . , }: the constraints U ⋖∗ X and X ⋖∗ U ′ are added.

In the following examples, we apply the algorithm to the classes Cycle (Exam-
ple 7).

Example 8. Applying the algorithm to the class Cycle we get the surjective
mapping h with

h(L ) = X
h(M ) = X

and the adapted class:

c lass Cycle {
<X> void m(X x, X y) {

y = x;
x = y;

}
}
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Eliminate infima und further simplifications The following example presents
the problem.

Example 9 (Infimum). Let the class Infimum be given:

c lass Infimum {
m( a::A , b::B , c::C ) {

b = a;
c = a;

}
}

For the inferred method parameter m(L x, M y, N x) we get

CFGGm = { (A⋖ B), (A⋖ C ), (B ⋖ Object), (C ⋖ Object) }

But

<A extends B, A extends C, B, C> void m(A x, B y, C z) {...}

is not a correct declaration as multiple inheritance is prohibited.

Before we solve this problem we have to consider some other properties. For
the elimination of infima we have to differ two cases: Type variables of types of
argument and return types on the one hand and type variables of types of inner
nodes on the other hand.
We will start with the consideration of type variables of types of argument and
return types.

Definition 3 (Type variables in covariant and contravariant position).
A type variable of an argument of a function/method is in contravariant position.
A type variable of a return type of a function/method is in covariant position.

In the following we write for a type variable in contravariant position R(−) and
for a type variable in covariant position T (+).
From the property that for function types

(ty′→rty)≤∗ (ty→rty′)

holds true
ty≤∗ ty′ and rty≤∗ rty′.

follows for elements of the members of the completed family of generated gener-
ics:

A type variable in contravariant position is a subtype of a type vari-
able in covariant position (T (+) ⋖ T ′(−)). The subtype T (+) has to be
maximal and the supertype T ′(−) has to be minimal in a principal type.
Therefore these type variables can be equalized.

Two type variables in contravariant positions (T (−) ⋖ T ′(−)) have to be
maximal in a principal type. Therefore, T (−) and T ′(−) can be equalized.
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Two type variables in covariant positions (T (+) ⋖T ′(+)) have to be min-
imal in a principal type. Therefore, T (+) and T ′(+) can be equalized.

A type variable in covariant position is a subtype of a type variable
in contravariant position (T (−)⋖T ′(+)). In the principal type T ′(+) has
to be maximal and T (−) has to be minimal. Therefore these type variables
cannot be equalized.

In the following we give some examples which represents the different constella-
tion which have to be considered.

Example 10. Let the class Id be given.

c lass Id {
R id(A x) { return x:A; }

}

The completed family of generated generics are given as

CFGGid = {A(−) ⋖ R(+) }.

As in in this example the case type variable in contravariant position is a sub-
type of a type variable in covariant position is given the type variables can be
equalized and the simplified program is given as

c lass Id {
<A> A id(A x) { return x; }

}

The next example represents the case that a covariant type variable is a subtype
of a contravariant type variable.

Example 11. Let the class Recursion be given.

c lass Recursion {
R m( a::A , b::B ) {

i f (cond ) b = m(a, b);
else return a;

}
}

CFGGm = {A(−) ⋖ R(+),R(+) ⋖ B (−),B (−) ⋖ Object }

The constraint is R(+) ⋖ B (−) remains as if in the case that a type variable
in covariant position is a subtype of a type variable in contravariant position
the type variables cannot be equalized. The type variables A(−) and R(+) are
equalized.

The result program is given as
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c lass Recursion {
<R extends B, B> R m(R a, B b) {

i f (cond ) b = m(a, b);
return a;

}
}

In the following we will see that there are more complex constellations with
inifima and inner type variables which we have to solve, too.
First, we consider the elimination of inifima.

Eliminatation of inifima As said above it is necessary to eliminate all inifima,
as infima are not allowed in Java subtyping hierachies. We consider examples that
represents the different constellations.

I. All type variables are in contravariant position

Example 9 is an example for this case.

Example 12. As in Example 9 the three type
variables A(−), B(−), C(−) are contravariant
and type variables in contravariant positions
can be equalized the result program is given
as

A(−)

C(−)

B(−)

c lass Infimum {
<A> void m(A a, A b, A c) {

b = a;
c = a;

}
}

II. All type variables are in covariant position The following example
shows a covariant infimum of covariant type variables.

Example 13. Let the classes Triple and InfCovariant be given.

c lass Triple <U, T, S> {
U a;
T b;
S c;

U fst() { return a; }
T snd() { return b; }
S trd() { return c; }

}

c lass InfCovariant {

134



R m() {
return new Triple <>(m().trd(), m(). trd(), m().trd ());

}
}

The type unification function determines R = Triple<R1, R2, R3> The com-
pleted family of generated generics is given in Fig. 3. The result is given as:

CFGGm = {R3 (+) ⋖ R1 (+),

R3 (+) ⋖ R2 (+),

R1 (−) ⋖ Object,

R2 (−) ⋖ Object }

R
(+)
1

R
(+)
3

R
(+)
2

Fig. 3. All type variables are in covariant position

c lass InfCovariant {
<R3> Triple <R3 , R3, R3> m() {

return new Triple <>m().trd(),m(). trd(),m().trd ());
}

}

III. Covariant infimum of contravariant type variables The next ex-
ample represents the case that a covariant type variable is a subtype of two
contravariant type variable. Therefore we extend the Example 11.

Example 14. Let the class RecursionInf be given.

c lass RecursionInf {
R m( a::A , b::B , c::C ) {

i f (cond ) {
b = m(a, b, c);
c = m(a, b, c);

else return a;
}

}

The completed family of generated generics is given in Fig. 4. The constraints
R(+) ⋖ B (−) and R(+) ⋖ C (−) should be remained as if in the case that a type
variable in covariant position is a subtype of a type variable in contravariant
position the type variables cannot be equalized. As above, the type variables
A(−) and R(+) are equalized. Additionally, the type variables B (−) and C (−)

have to be equalized to elinimate the infimum. This make the program indeed
less principal but it becomes type correct. There is no more principal type correct
solution.

The result program is given as
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CFGGm = {A(−) ⋖ R(+),

R(+) ⋖ B (−),

R(+) ⋖ C (−),

B (−) ⋖ Object,

C (−) ⋖ Object }

B(−) C(−)

R(+)

A(−)

Fig. 4. Covariant infimum of contravariant type variables

c lass RecursionInf {
<R extends B, B> R m(R a, B b, B c) {

i f (cond ) {
b = m(a, b);
c = m(a, b);

}
return a;

}
}

IV. Inner type variables as Infima First we consider an example, where an
inner type variable is an infimum of two contravariant type variables.

Example 15. Let the class InnerInf be given:

c lass InnerInf {
void m( a::A , b::B ) {

var i::I = null ;
a = i;
b = i;

}
}

The completed family of generated generics is given in Fig. 5. All type variables

CFGGm = { I ⋖A(−),

I ⋖ B (−),

A(−) ⋖ Object,

B (−) ⋖ Object }

A(−)

I

B(−)

Fig. 5. Inner type variables as Infimum of two contravariant type variables

have to be equalized to elinimate the infimum. The result is given as:

c lass InnerInf {
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<A> void m(A a, A b) {
A i = null ;
a = i;
b = i;

}
}

The next two examples shows the situation that the infimum is an inner type
variable of type variables with different variance.

Example 16. Let us consider the following class:

c lass InfReturn {
R m( a::A ) {

var ret::I = null ;
a = ret;
return ret;

}
}

The completed family of generated generics is given in Fig. 6.

CFGGm = { I ⋖A(−),

I ⋖ R(+),

A(−) ⋖ Object,

R(+) ⋖ Object }

A(−)

I

R(+)

Fig. 6. Inner type variables as Infimum of type variables with different variance (I)

This family contains an infimum I . Therefore this have to be eliminated. We have
to determine if the inner type variable I should be co- or contravariant. If we
consider I as contravariant all type variables could be equalized as I (−) ⋖R(+),
and I (−)⋖A(−). This approach is less principal than the approach to consider I
as covariant. This means I (+) ⋖ R(+), and I (+) ⋖ A(−). In this case only I and
R are equalized. The result program is given as:

c lass InfReturn {
<R extends A, A> R m(A a) {

I ret = null ;
a = ret;
return ret;

}
}

In the following we extend the class such that two contravariant type variables
are supertypes of the infimum.
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Example 17. Let the extended class InfReturn be given.

c lass InfReturnII {
R m( a::A , b::B ) {

var ret::I = null ;
a = ret;
b = ret;
return ret;

}
}

The completed family of generated generics is given in Fig. 7.

CFGGm = { I ⋖A(−),

I ⋖ B (−),

I ⋖ R(+),

A(−) ⋖ Object,

B (−) ⋖ Object,

R(+) ⋖ Object }

A(−) B(−)

R(+)

I

Fig. 7. Inner type variables as Infimum of type variables with different variance (II)

The approach to declare the infimum I as covariant leads to I (+) ⋖R(+), I (+) ⋖
A(−), and I (+) ⋖ B (−). In this case I and R are equalized, too. But in this
example there is an new infimum R with R(+)⋖A(−) and R(+)⋖B (−), that has
be eliminated, too.
As in Example 14 in both constraints the type variables in covariant position
are subtypes of a type variable in contravariant position. Therefore, the type
variables cannot be equalized.
To elinimate the infimum R the type variables A and B have to be equalized.
As in Example 14 this make the program indeed less principal but it becomes
type correct. There is no more principal type correct solution.
The result program is given as:

c lass InfReturnII {
<R extends A, A> R m(A a, A b) {

R ret= null ;
a = ret;
b = ret;
return ret;

}
}

We close the section with a complex example with two infima and two suprema.
We will see that the infima have to be eliminated and the suprema can be
eliminated to siplify the example.
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Example 18. Let the following class Complex be given:

c lass Complex {
m( b::B ) {

var c::C = b;
var d::D = c;
var e::E = null ;
d = e;
var r1::R1 = e;
var f::F = e;
var g::G = null ;
f = g;
var r2::R2 = g;
return new Pair <>(r1,r2);

}
}

The completed family of generated generics is given in Fig. 8.

CFGGm = {B (−) ⋖ C ,
C ⋖D ,
E ⋖D ,
D ⋖ Object,

E ⋖ R1 (+),

R1 (+) ⋖ Object,
E ⋖ F ,
F ⋖ Object,
G ⋖ F ,

G ⋖ R2 (+),

R2 (+) ⋖ Object }
B(−)

C

D

E

F

G

R
(−)
1 R

(−)
2

Fig. 8. Complex example

The program contains two infima E and G which have to be eliminated. Similar
as in Example 16 and in Example 17 the type variables E and R1 and G and
R2 are equalized, respectively. This eliminates the infimum G . Furthermore, the
type variables B and C can be equalized. As B is in contravariant position it
should be as maximal as possible. If additionally D would be equalized with B
and C the program becomes less principal as E is no subtype of B but E would
be a subtype of the equalized type variable. Finally, the infimum R1 respectively
E of D and F have to be eliminated. As neither R1 nore R2 should become a
supertype of B the type variables D and F have to equalized. The result is given
in Figure 9.
If we consider the result more in detail we will see that the supremum is an
inner type variable. Therefore any upper bound can be instantiated during a
method call of m. As Object is an upper bound of any set of Java types we can
instantiate Object without loosing principality.
The simplified result is given as:

139



c lass Complex {

<B extends F,
R1 extends F,
R2 extends F, F>

Pair <R1, R2 > m(B b) {
B c = b;
F d = c;
R1 e = null ;
d = e;
R1 r1 = e;
F f = e;
R2 g = null ;
f = g;
R2 r2 = g;
return new Pair <>(r1,r2);

}
}

B(−) R
(+)
1 R

(+)
2

F

Fig. 9. Complex example

c lass Complex {
<B, R1, R2 > Pair <R1, R2> m(B x) {

B c = b;
Object d = c;
R1 e = null ;
d = e;
R1 r1 = e;
Object f = e;
R2 g = null ;
f = g;
R2 r2 = g;
return new Pair <>(b,e);

}
}

4 Summary and Outlook

In this paper we presented first a short summary of the two existing functions
of the Java-TX global type inference algorithm tree traversing and type unifica-
tion. The main part is the new function generated generics. This functions takes
the remaining type variables of the type unification and transfers them to type
parameters (generics) of the classes and its methods, respectively, in a way such
they become principal types.
This is done in three steps. First, the type variables are mapped to a class or a
method, respectively. After that some additional bounds of the type parameters
are generated induced by the method calls. The next step is to transform the
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bounded type parameters to Java-conforming type parameters. Therefore first
the cycles are removed. Second, the infima are eliminated. The elimination of
the infima is a complex process. The main challenge is one the one hand indeed
to eliminate the infima which means that the type can become less principal but
on the other hand the challenge is to get the most principal type that is a correct
Java type. Therefore we have to consider different constellations which have to
be handled different. In this paper we considered many constellations and give
corresponding examples, respectively.
In future work these constellations have to be summerized to an algorithm elim-
inate infima which become the last part of the function generate generics.
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A grammar centric approach to generate drag &
drop subsets of programming languages⋆

Marcus Riemer1,2 and Frank Huch1
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2 AKRA GmbH, Hamburg, Germany, marcus.riemer@akra.de

Abstract. We present a way to use two of the most typical tools of
compiler construction, namely grammars and (syntax) trees, as the foun-
dation to build a generator that can create drag & drop editors for pro-
gramming or markup languages. Instead of text files, the generated ed-
itors operate on syntax trees and use special grammars to ensure the
resulting tree is well formed. The editors can be generated for two differ-
ent backends: Either our custom editor called BlattWerkzeug or Blockly,
which is the de-facto standard for drag & drop editors and e.g. used by
Scratch. If the grammar additionally defines the syntax of the language
through terminal symbols, the syntax tree can immediately be repre-
sented as a properly formatted text document as well. The grammar we
developed is conceptually based on XML Schema and is used to validate
trees where each node corresponds to a block that is draggable in the
user interface. This visual use case brings the important requirement of
never confronting the user with a block that has no representation. To
aid in this requirement, the grammar can define artificial nodes which do
not appear in the tree but only aid in validation. We currently have pro-
totypes for drag & drop subsets of SQL, JavaScript & HTML and are
exploring design patterns to build intuitive editors, possibly involving
the use of parser-parser combinators, as our current area of research.

⋆ Supported by AKRA Hamburg
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Fuzzing through the Prism of Programming
Language Theory
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Abstract. In recent years fuzz testing has emerged as an effective test-
ing strategy for finding bugs. Interestingly, the principles behind fuzzing
— feeding a system with randomly generated input and observing the
said system for negative behaviour — have shown success for both simple
and complex hardware and software systems.
In this work we present an introduction to fuzz testing from the perspec-
tive of programming language theory. We reflect on how fuzzing fits the
big picture of program analysis and illuminate its connections to formal
methods.
Furthermore, we present our ongoing work into a theoretical model that
seeks to succinctly explain fuzzing via Markov Decision Processes. We
provide concrete examples for fuzzing’s fundamental limits.
On the experimental side, we discuss implementation optimizations that
seek to increase the fuzzing utilization of existing hardware. We comple-
ment the discussion with preliminary evaluation results.
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Auffinden von Quellcode-Klonen in
Zwischencodedarstellungen von Java Bytecode
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Abstract. Kopierter, wiederverwendeter und veränderter Programm-
code ist ein häufiges Phänomen in der Softwareentwicklung. Da die da-
raus resultierenden Code-Klone oft nicht als solche gekennzeichnet sind
und ihre korrekte Erkennung für die Softwarequalität und das Re-Enginee-
ring von entscheidender Bedeutung ist, wurden zahlreiche Techniken und
Werkzeuge zum Auffinden von Code-Klonen entwickelt. Dies gilt auch
für die Programmiersprache Java, obwohl die meisten Klon-Detektoren
mit Java-Quellcode arbeiten. Nur ein Teil der Forschung befasst sich mit
Code-Klonen in Java Bytecode und ein noch kleinerer Teil untersucht
die Beziehung zwischen Java-Quellcode und Bytecode-Code-Klonen. In
dieser Arbeit erweitern wir den quellcodebasierten Klon-Detektor Stone-
Detector auf Java Bytecode. Mit BigCloneBench als State-of-the-Art-
Benchmark sind wir in der Lage, seine Effektivität bei der Erkennung von
Quellcode-Klonen in Java Bytecode zu bewerten und zu analysieren. Wir
berichten auch über Unterschiede in der Leistung der Klon-Erkennung
für Stack-basierte und Register-basierte Repräsentationen von Java Byte-
code. Die Ergebnisse zeigen, dass Quellcode-Klone in Java-Quellcode und
Bytecode im Allgemeinen zwar unterschiedlich sein können, dass aber
Quellcode-Klone in Java-Bytecode mit dem angepassten System mit ho-
her Wiedererkennung und Präzision erkannt werden können.
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Why Rank-Polymorphism Matters

Sven-Bodo Scholz1

Radboud University, Nijmegen, Netherlands
SvenBodo.Scholz@ru.nl

Abstract. Rank-Polymorphism refers to programming language sup-
port for specifying functions that operate on arrays of arbitrary dimen-
sionality (rank). This paper argues why this is an important language
feature even though it may intuitively appear that in real-world applica-
tions data typically lends itself to rather low-dimensional index-spaces.
By means of a few examples in the rank-polymorphic array programming
language SaC we show how rank-polymorphism does not only allow for
very concise generic specifications, but it also is conducive when ex-
pressing algorithmic variations for optimising algorithms with respect to
parallelism pattern or temporal locality.

1 Introduction

Almost all programming languages support some data structure that is referred
to as array. It usually is seen as a memory region containing several data items
that can be directly accessed through consecutive indices. While these indices
are traditionally restricted to whole numbers starting from zero or one, many
languages nowadays support various different forms of indices, including not
only enumerations but also arbitrary strings as indices, usually referred-to as
associative arrays.

Furthermore, most languages allow for arbitrary nesting of data structures,
including nested arrays. Although such nested arrays can be viewed as a way to
represent multi-dimensional arrays, the nesting structure itself usually is not an
integral part of the array data type itself. This aspect is what sets array pro-
gramming languages apart. Array Programming Languages are designed around
multi-dimensional arrays as predominant data structure where the index space
is more complex, typically an n-fold product of indices which, by itself, can be
seen as a one-dimensional array of indices.

Multi-dimensional arrays have a natural match with multi-dimensional vector
spaces as they occur in many applications in physics and other natural sciences.
Since the dimensions of a vector space can be described through a matrix of
bases with corresponding rank, array languages typically refer to the number of
dimensions as rank. The structure of any multi-dimensional array is integral part
of such an array. It can be described by its rank and its shape. In its simplest
form, the shape can be described by a vector of whole numbers that denote the
size of the index space for all dimensions.
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As soon as we step away from seeing multi-dimensional arrays as a nesting
of one-dimensional ones but look at them as a structure with rank and shape, it
becomes rather natural to generalise the programming capabilities around these
structures. All that is needed to do so is a capability to define such arrays from
a given rank and shape and to access their elements through shape-compliant
indices. Once these capabilities are provided, we can write abstractions that are
rank-polymorphic, i.e., abstractions that can process multi-dimensional arrays
of all possible ranks.

While such level of abstraction is conceptually nice, it usually comes at a price
in terms of runtime performance. There are many contributing factors: (1) the
generality of rank-polymorphism significantly increases the complexity of type
systems that are capable to statically identify out-of-bound accesses; (2) iteration
over individual elements or certain subsets of elements can no longer be expressed
through a fixed nesting of linear loops; (3) various compiler optimisations due
to the generality of the required code either become impossible or at least much
more difficult; the list goes on. These observations give rise to the question: Do
we really need this level of generality?

If we look at typical applications that naturally lend themselves to multi-
dimensional arrays, such as applications from image processing, natural sciences,
machine learning, etc., the number of dimensions that arise from the applications
themselves are typically rather small. While it is nice to be able to specify rank-
polymorphic library functions, it may seem that a fixed set of dimensions up to
a small upper limit, say 4 or 5, in practice might suffice.

As it turns out, this is the wrong way of looking at the question. Instead of
asking What applications require rank-polymorphism? we should ask the question
What can rank-polymorphism add to our applications?

This paper follows up on exactly that question. We look at three different
applications each of which exposes a different aspect of the expressive power that
arises from rank-polymorphism. We identify how rank-polymorphism can take a
crucial role to capture more holistic perspectives on the transformation of data,
how it can control parallelism, and how it can be key for advanced optimisations
such as blocking.

As a vehicle for our exposition, we use the functional array programming
language SaC. However, all our observations and results should carry over to
any other array programming language with support for rank-polymorphism
such as APL [1] or Accelerate [2].

Section 2 gives a brief characterisation of the implications that support for
rank-polymorphism has on the required programming language support, be it
as a DSL or a standalone language. Section 3 then introduces the key features
of SaC (version 2.0) with a special emphasis on those design aspects of SaC that
enable rank-polymorphism. The subsequent three sections demonstrate three
different aspects of the power of rank-polymorphism at three different example
applications. Section 4 looks at ways on how to program neural networks for deep
learning. As it turns out, the connections between different layers quite naturally
lead to deeply nested arrays of weights which can be conveniently looked at as
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higher-dimensional arrays. Controlling the parallelism of an application through
the shape of arrays is investigated in Section 5. At the example of scan opera-
tions, we show how various implementational variants that expose very different
behaviours in terms of parallelisation and synchronisation can be captured by
a single rank-polymorphic specification. Section 6 again leverages array shapes
in order to express different runtime behaviours. This time, however, it con-
cerns the temporal locality of a shape-recursive matrix multiply, which can be
steered entirely by the shape of the argument matrices. Finally, we draw some
conclusions in Section 7.

2 Rank-Polymorphism in Programming Languages

The key for supporting rank-polymorphism is the introduction of arrays that
have an inherent notion of rank and shape. While the former specifies the num-
ber of independent indexing dimensions, the latter describes the exact range of
legitimate indices. Furthermore, there needs to be support to enable a definition
of functions whose domain allows for arrays of arbitrary rank and shape. These
two requirements have several immediate implications on the design of languages
that support rank-polymorphism.

2.1 Indexing Arrays

From the premise of dealing with an array of arbitrary rank and shape, element-
selection requires a sequence of indices whose length matches the rank of the
array to be selected from. If we want to capture such a sequence by a single
variable, irrespective of the rank of the array we want to select from, that variable
itself requires an array-like structure. Many array languages therefore use rank-
one arrays as indices.

2.2 Iterating over Arrays

Similar to selections, a dimension-wise iteration through a static nesting of
loops for rank-polymorphic programs is not possible in the context of rank-
polymorphism. Instead, we need to either nest loops through explicit recursion
within a loop body, or we need to provide some form of index generator that is
parameterised by a given shape.

2.3 Defining Operators

Defining rank-polymorphic operators requires at least one built-in construct for
generating an array of a given rank and shape. In several array languages, in
particular the earlier ones like APL, there exists an entire set of built-in operators
that are rank-polymorphic and that can be combined in order to generate more
complex ones. Other systems such as Blitz [3] provide these basic operations
through a shallowly embedded DSL, or through a set of built-in second-order
operators such as in Futhark [4].
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2.4 Types and Type Systems

There is a wide range of approaches towards typing languages that support
multi-dimensional arrays. While APL and APL-like languages typically do not
support any explicit notion of types, more recent languages do. Amongst these,
the main differentiating criterion is the level of shape information that is cap-
tured by the type system. While it would be desirable to statically guarantee
shape compliance for entire programs, in general, this requires the full power of
dependent typing. Several approaches towards this have been proposed in the
literature such as in Qube [5] or in Remora [6]. The inherent un-decidability in
general has led to several less stringent type systems such as the one of SaC [7] or
the one in Futhark [4]. While SaC injects dynamic checks if correctness remains
unproven at compile time, Futhark restricts the set of legal programs to fixed
ranks and it does not support recursion.

2.5 Nesting

Nesting in the context of multi-dimensional arrays takes a special role. We have
to distinguish two cases: homogeneous nesting and in-homogeneous nesting. The
former refers to a case where the individual sub-arrays of the outer array all
have the same shape, whereas the latter allows them to be different.

The key observation is that there is an intuitive isomorphism between homo-
geneously nested arrays and a counterpart whose rank is simply the addition of
the ranks of the two. For example, a vector of m elements, each of which is a vec-
tor of n elements can be viewed as a m×n matrix. Most array languages support
array algebras that allow for switching arbitrarily between the homogeneously
nested and the non-nested view.

In fact most array languages that aim at high-performance parallel computing
do not even support in-homogeneous nesting at all while more traditional array
languages such as APL typically do support nesting. The programming language
Nial [8] takes the aspect of in-homogeneous nesting one step further; it considers
all arrays as (in)-homogeneously nested.

3 Single Assignment C

As indicated by the name of SaC, it has a close similarity to the programming
language C. In fact, most language constructs from C can be readily used in SaC
and they have the same semantics as in C. The key difference between C and
SaC is that SaC does not support any data structures from C other than scalar
values. Instead, SaC supports multi-dimensional arrays as the only form of data
structure. In SaC, all arrays are, at least conceptually, being passed by value.
This allows C’s scalar values to be considered arrays as well. Like in most array
languages, they constitute arrays of rank 0 which have an empty shape. In the
following, I provide a brief overview of the key features needed to understand
the examples in this paper. For more details please do refer to [7, 9].
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3.1 Arrays in SaC

In SaC, arrays can only have rectangular shapes. This choice allows shapes to be
described by a single vector of upper bounds for indices whose length matches
the rank of a given array. For example, an array of shape [10,20] describes a
matrix whose first index can range from 0 to 9, and whose second index ranges
between 0 and 19.

SaC only supports homogeneous nesting and always implicitly considers these
higher-dimensional arrays. For example, the expression [[1,2,3],[4,5,6]] de-
notes a rank 2 array of shape [2,3]. In contrast, an expression of the form
[[1,2,3],[4,5]] does not form a legal expression in SaC. Selections with fewer
indices than the rank of an array return the corresponding hyper planes as if
the array was nested. For our array of shape [2,3] from above this means that
selecting at the index vector [0] results in the first row ([1,2,3]), while a
selection with the index vector [0,1] returns the value 2.

3.2 Function signatures in SaC

Function signatures in SaC very much look like function signatures in C. The key
differences are that (i) SaC supports multiple, comma separated return values,
and (ii) all argument types are composed of an element type, followed by a shape
specification. As element type, all built-in C types are supported. For the shape
specification, SaC supports a notion similar to pattern matching.

In their simplest form, we can specify a restriction to a fixed shape. For ex-
ample, int[2,3] refers to rank 2 arrays of integers that have a shape of [2,3].
If we want to denote rank 3 integer arrays of arbitrary shape, we can either
use int[.,.,.] or replace the dot symbols by variables, in case we want to
refer to the sizes further (e.g., int[m,.,n]). Repeated use of the same variable
requires equivalence in those shape components. For example, double[n,n] de-
notes quadratic matrices of double values.

To support rank-polymorphism, SaC allows for pattern within the shape
specification that capture entire sequences of shape components. The most generic
example is a specification of the form int[*], which allows arbitrarily shaped
arrays of integer values. Similar to the variables that can be used to match in-
dividual shape components, we can also use variables to match against entire
ranges of shape components. To do so, we use a length specifier followed by the
colon symbol followed by a variable that matches length-many shape compo-
nents. The length component itself can either be a constant or a variable itself.
For example, int[3:shp] will match integer arrays of rank 3 whose shape will
be captured by the vector variable shp. Likewise, int[d:shp] matches arbitrary
integer arrays and captures the rank in the variable d and the shape in the vector
variable shp.

All these pattern can be combined allowing for sophisticated shape depen-
dencies to be expressed. For example,
double[m:ishp] sel (int[n] iv , double[n:oshp ,m:ishp] a)
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can be used to describe selections into arbitrary arrays of doubles. Here we see
that the length n of the index vector iv splits the shape of the array a into two
parts and selects the corresponding hyperplane of rank m and shape ishp.

3.3 Defining arrays using tensor comprehensions

The central language construct of SaC that extends its C core is the tensor
comprehension. It takes the form

{ <idx> -> <expr> [ | <range-spec> ] }
and it describes an array through a mapping from indices (<idx>) to values
(<expr>). The shape of the result array can either be inferred from the way
<expr> is defined or it can be specified explicitly through an optional range
specification (<range-spec>).
In its simplest form, we can define a vector of 20 zeros by

{ [i] -> 0 | [i] < [20] } .
Assuming a given array arr of shape shp, we can write

{ iv -> arr[iv] + 1 }
to define a new array of shape shp whose elements are the increments of the cor-
responding elements in arr. Note here, that this element-wise increment works
for arbitrary shapes shp including empty shapes in case arr is a scalar value. If
we specify

{ [i,j] -> arr[j,i] }
we require arr to be at least of rank 2 and we transpose the first two axes of
arr. Finally, we can also create an array of a modified shape. For example, if we
write

{ iv -> arr[iv] | iv < shp/2 }
we create an array that has the same elements as those in arr but whose shape
has been halved along all axes. For more details on the semantics of tensor com-
prehensions in SaC, in particular the shape inference when a range specification
is missing please see [10].

4 Generality Through Shapes

In this Section, we look at the expressive power that stems from the interplay
between homogeneous nesting and rank-polymorphism. As an example, we look
at one of the core functions needed when implementing convolutional neural
networks (CNNs), one of the standard approaches to deep learning.

At the heart of CNNs lies a convolutional kernel. It takes some input data
and blurs the data by computing weighted sums of neighbouring elements. When
applying deep learning to images, these data are typically 2-dimensional, how-
ever, in general the data can be n-dimensional. To describe a convolution, we
need a small array of weights that defines to what degree the corresponding
neighbour elements should contribute to the blurring. In SaC, we can describe
convolutions for n-dimensional inputs through the following function:
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float[n:oshp] Convolve (float[n:ishp] in,
float[n:wshp] weights)

{
oshp = ishp - wshp + 1;
return { iv -> sum ({ jv -> weights[jv] * in[iv+jv] })

| iv < oshp };
}

Here, we see that the output of such a convolution, while being of the same
dimensionality n, is a bit smaller than the input as the outermost elements of
the input data do not have the required neighbouring elements to apply the
weighting. We also can see that for each resulting element at index position iv,
we have to compute a sum over the products of all elements of the array of
weights weights with the corresponding neighbours of the input in.

While this implementation is straight-forward, in practice, we often face the
challenge that the CNN needs to apply the same convolution on an entire batch
array of inputs. To add to the challenge, the input data often is interleaved as to
allow for more efficient runtime performance. While this in traditional languages
may require some non-trivial adjustments in offsets and index computations, in
an array language such as SaC this can be achieved by two minor adjustments:
float[n:oshp ,b:bshp] Convolve (float[n:ishp ,b:bshp] in,

float[n:wshp] weights)
{

oshp = ishp - wshp + 1;
return { iv -> rsum (n, { jv -> weights[jv] * in[iv+jv] })

| iv < oshp };
}

The most important change is the extension of the specified argument and re-
turn types. Here we add a pattern b:bsh to both of them. Note here, that this
allows for arbitrary forms of batch applications, including the non-batched case
itself! SaC’s isomorphism between homogeneous nesting and higher-dimensional
arrays allows the expression { jv -> weights[jv] * in[iv+jv] } to be used
unchanged. However, it now denotes an array of shape wshp ++ bshp since the
selections in[iv+jv] result in arrays of shape bshp rather than just individ-
ual elements. Since the function sum that we used previously always reduces to
individual elements, we have to adjust that reduction to ensure that we sum
up arrays of shape textttbshp. This can be done by using a function rsum in-
stead, which expects the number of ranks that it should sum over as a first
parameter. Once that is done, the expression rsum (n, { jv -> weights[jv]
* in[iv+jv] }) computes an array of shape bshp, leading to the desired overall
result.

The next challenge we face is the need to apply convolutions to an entire set
of weights, yielding an entire array of convolved inputs as results. Furthermore,
we typically want to add some bias to each of these convolutions. This can be
expressed, using the same nesting-isomorphism:
float[m:mshp ,n:oshp ,b:bshp] MultiConv (float[n:ishp ,b:bshp] in,

float[m:mshp ,n:wshp] weights ,
float[m:mshp] bias)

{
return { iv -> Convolve (in, weights[iv]) + bias[iv]

| iv < mshp };
}
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We add another shape, this time around the weights. It is of rank m and of shape
mshp. In the body of the function, we have a single tensor comprehension that
maps the convolution Convolve over this shape, yielding an array of rank m+n+b
as result.

This most interesting aspect of this little example is that the resulting code,
despite only requiring less than 20 lines of code, is very generic. It allows for
convolutions on input of arbitrary rank, supports batching without requiring it
(iff b=0), and it supports multiple convolutions with different weights without
requiring that either (iff m=0).

For more details on implementng full CNNs in SaC and a comparison of
runtime performance with state of the art frameworks see [11].

5 Controlling Parallelism Through Shapes

In this Section, we show how array shapes can used in order to shape the way
parallelism can unfold. The scan operation serves as running example. In its
simplest form, we can define a scan of an n element vector a as another n element
vector b whose elements are defined by bi =

∑
j<i aj . This definition can be

translated into the following SaC function:
int[n], int scan(int[n] a) {

return ({ [i] -> sum ({[j] -> a[j] | [j] < [i]}) | [i] < [n]},
sum (a));

}

For convenience, we return the complete sum of a as a second return value.
While the correspondence to the mathematical formulation renders this an

intuitive implementation, it has one major drawback. The inherently indepen-
dent specification of all elements of the result, when compiled naively, leads to
n parallel computations of the partial sums without sharing any of them.

To achieve a maximum of sharing, we can specify a purely sequential version
of the computation. We can do so in SaC by re-defining a element-wise, using a
for-loop:
int[n], int scan(int[n] a) {

s = 0;
for (i = 0; i < shape(a)[0]; i++) {

t = a[i];
a[i] = s;
s += t;

}
return (a, s)

}

This solution constitutes the other end of the spectrum of possible implemen-
tations. We do expose a maximum of sharing but expose no concurrency at all.
Now let us try to target a middle-ground solution. The basic idea is that we cut
the vector into sections of equal length (assuming here that that is possible).
To describe this, we reshape the vector into a matrix so that the rows indeed
constitute the chunks that we want to compute in parallel. Once this is done, we
can apply our sequential scan function in parallel to each row. From the sums
of the rows we then derive, again by means of a sequential scan, the values that
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we need to add to each row in order to obtain the complete scan on the entire
matrix.

At the example of the 8-element vector that contains the values 0 to 7, we
can see how this transformation leads to the correct result:

This idea can be encoded in SaC as:
int[m,n], int scan(int[m,n] a) {

a, ms = { iv -> scan (a[iv])| iv < [m]) };
ms, s = scan (ms);
a = a ^+ ms;
return (a, s);

}

Note here, that this implementation makes use of SaC’s support for ad-hoc
overloading. It ensures that the recursive call actually refers to the previous,
sequential implementation. Another aspect to observe is the use of the infix
operation ˆ+. It refers to an addition of arrays with different rank, which builds
on the expectation that the shape of the smaller rank array is a prefix of the
shape of the larger-rank array; it replicates all the values of the smaller array to
match the shape of the larger-rank array.

With this definition, the amount of parallelism and sharing can be controlled
by the shape of the matrix. The more rows we have, the more parallelism we
generate and the longer the row vectors, the more sharing we have. The only
downside of this formulation is that the more rows we generate, the longer our
sequential scan over the results of the parallel scans becomes. To avoid this
sequential bottleneck but yet generate sufficient parallelism, we can recursively
repeat our reshaping exercise. Instead of reshaping into a rank 2 array, we can
reshape into a rank n array, again assuming that is possible. With this idea, we
can now formulate our scan as:
int[n:shp ,m], int scan(int[n:shp ,m] a) {

a, ms = { iv -> scan (a[iv])| iv < shp) };
ms , s = scan (ms);
a = a ^+ ms;
return (a, s);

}

153



Note here that our initial parallel scan directly invokes a sequential scan on
the last axis of the array a. This provides a large amount of parallelism on the
first scan, and at the same time, renders the call scan (ms) a parallel scan
again. As it turns out, this formulation generates the same pattern of parallel
additions as Blelloch’s algorithm in [12] does. However, by simply reshaping our
data we can now create a wide range of parallel executions without changing
the actual definition of the function scan. For a more detailed discussion and
further specificational alternatives please see [13].

6 Controlling Blocking Through Shapes

Similarly to using array shapes and rank-polymorphic programming for steering
concurrency, we can leverage this technique for multi-level blocking algorithms
as well. As a prominent example, let us consider matrix multiplication. A direct
translation of the mathematical definition of matrix multiplication can in SaC
be written as:
float[m,p] matmul (float[m,n] a, float[n,p] b)
{

return {[i,j] -> sum ({[k] -> (a[i,k] * b[k,j]) }) };
}

While this computes the correct results, it is well known that a naive code
generation for it quickly inhibits good, let alone near-peak runtime performance.
The reason lies in the poor cache locality when computing individual result
elements independently. Instead, so-called blocking techniques are being used.
The overall idea is to divide the matrices into matrices of sub-matrices. Then,
we can re-arrange our addition of products into an outer product of matrix
multiplies of the sub matrices. In SaC this means that we can block our matrices
of rank 2 into matrices of rank 4. Considering a four-by-four matrix as example,
this means we want to transform it into a matrix of shape 2,2,2,2]:

Such a transformation in SaC can be expressed as:
int[2:bshp ,2:rshp] block (int[2] bshp , int[2:shp] a)
{

rshp = shp / bshp;
return { [i,j,k,l] -> a[rshp *[i,j] + [k,l]]

| [i,j,k,l] < bshp ++ rshp};
}

Once we have blocked matrices, we can overload the function matmul for the
blocked case:
float[m,p,mm ,pp] matmul (float[m,n,mm,nn] a, float[n,p,nn,pp] b)
{

return {[i,j] -> rsum(1, {[k] -> matmul (a[i,k], b[k,j]) }) };
}
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Notice here, that this looks almost identical to the rank 2 version. The key
difference is that we do have a call to the rank 2 matrix multiply instead of the
scalar multiplication. Consequently, that computation yields rank 2 arrays as
results which requires us to, once again, replace the sum function by the more
versatile rank-specific summation function rsum. Once this has been done, we can
make matmul rank-polymorphic, enabling multiple levels of blocking. All that is
needed to achieve that is a change in the signature of the function matmul:

float[m,p,+] matmul (float[m,n,+] a, float[n,p,+] b)
{

return {[i,j] -> rsum(1, {[k] -> matmul (a[i,k], b[k,j]) }) };
}

Now, the recursive call to matmul, depending on the rank of a and b, either goes
to the very same function definition or to the special case for rank 2 arrays.

Similar to the previous section, we can see that the rank-polymorphism en-
ables us to define a shape generic version where the number and sizes of the
blocking levels are encoded in the ishape of the data and not in the definition
of the function matmul itself. As it turns out, using several levels of blocking
actually enables the generation of code that is competitive with highly hand-
optimised codes such as Intel’s matrix multiply in the MKL library. For more
details please see [14].

7 Conclusions

Rank-polymorphism proves to be more powerful than just enabling a reuse of
functionality to arrays of arbitrary rank and shape. As it turns out, it is the key
to encode sophisticated traversal pattern through the shape of data rather than
through explicit code. In this paper, we showcase the benefits from this technique
in two different contexts: the control of concurrency pattern in the context of
scan, and the control of blocking pattern in the context of matmul. By liberating
the algorithmic specification from the need to control these aspects we obtain a
clear separation of concerns. An experimentation with different concurrency or
blocking scheme turns into a reshaping of data and not into a re-write of the
algorithm itself. This benefits code clarity and, with it, code maintenance as well.
Furthermore, it opens the door to formal correctness proves of such algorithms
as shown in [14].

These observations give rise to many new questions: Can this blocking tech-
nique be applied in the context of other algorithms from linear algebra? Can
it be used to cover other code optimisation aspects? if so, which ones? Can we
expand this technique to cases where we cannot find shape divisors? Would this
require a more sophisticated notion of shapes? Can the proposed generalisations
be introduced through systematic code transformations rat her than manual re-
writes? It seems that the cases mentioned in this paper only constitute the tip
of the iceberg.
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Abstract. Die nunmehr für jedermann nahezu freie Verfügbarkeit um-
fangreich trainierter groÿer Sprachmodelle (engl. Large Language Models
(LLMs)) wie ChatGPT oder LLAMA stellt im tertiären Bildungsbere-
ich, sowohl für Lehrende als auch für Studierende, eine enorme Heraus-
forderung dar. Die Beurteilung der studentischen Leistung mit herkömm-
lichen Leistungsnachweisen, wie dem Vergleichen wissenschaftlicher Texte,
dem selbstständigen Verfassen wissenschaftlicher Arbeiten, oder dem
Ausarbeiten von Programmierbeispielen, erweist sich nunmehr als un-
tauglich. Bei geschicktem Einsatz generativer künstlicher Intelligenz kön-
nen ausreichende Lösungen mit minimalem Zeitaufwand und ohne eigenes
Fachwissen, generiert und zur Beurteilung vorgelegt werden.
Abseits dieser Problematik ergeben sich auch auf Seite der (ernsthaft)
Studierenden potentielle Probleme durch eine falsche Erwartungshal-
tung. Befeuert durch fragwürdige Behauptungen in unterschiedlichsten
Medien, herrscht weitläu�g die Meinung vor, dass derartige Systeme ver-
stünden, was sie generieren, bzw. semantisches Wissen um das bearbeit-
ete Thema hätten. So sind uns Fälle bekannt, in denen von ChatGPT
erstellte Dokumente als Informationsquelle zu Lerninhalten verwendet
wurden, ohne zu hinterfragen aus welcher Quelle die angebotene Infor-
mation stammt, bzw. ob diese fachlich überhaupt korrekt ist. Dass LLMs
kein tieferes semantisches Verständnis der generierten Inhalte haben und
häu�g auch "Fakten" extrapolieren, also halluzinieren, ist vielfach nicht
bewusst.
Nichtsdestotrotz sind zahlreiche groÿe Sprachmodelle inzwischen allge-
genwärtig in Verwendung und dies wird wohl auch so bleiben. O�en ist,
wie nun damit - auch im tertiären Bildungsbereich - umgegangen werden
soll. In unserem Vortrag werden wir unsere bisherigen Erkenntnisse sowie
unser geplantes weiteres Vorgehen zu den oben angeführten Problemen
erörtern. Dazu untersuchen wir das tatsächliche Leistungsvermögen von
ChatGPT aus Sicht eines Studierenden mittels einer Fallstudie bzw. wer-
den, im Umfeld der Hochschullehre vorgeschlagene, mehr oder weniger
zielführende Lösungsvorschläge diskutieren.
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Abstract. Java incorporates more and more type inference into the lan-
guage specification. It is used in lambda expressions and method calls.
Java type inference only works for limeted use cases and depends on
existing type annotations, the so called target type. The algorithm pro-
posed here extends the existing type inference for Java. Furthermore it
extends existing type inference algorithms for Java with a correct han-
dling of Java Wildcards. Our Unify algorithm solves type constraints
generated by typeless Java programs. It is able to calculate correct type
solutions for Java programs without any type annotations given.

1 Type Inference for Java

Type inference for Java has many use cases and could be used to help pro-
grammers by inserting correct types for them, Finding better type solutions for
already typed Java programs (for example more generical ones), or allowing to
write typeless Java code which is then type infered and thereby type checked
by our algorithm. The algorithm proposed in this paper can determine a correct
typing for the untyped Java source code example shown in figure 1a. Our algo-
rithm is also capable of finding solutions involving wildcards as shown in figure
1b.

This paper extends a type inference algorithm for Featherweight Java ( [4]) by
adding wildcards. The last step to create a type inference algorithm compatible
to the Java type system. The goal is to proof soundness in respect to the type
rules introduced by [2] and [1].

1.1 Constraints

Constraints consist of normal types and type variables.
List<String> ⋖ a, List<Integer> ⋖ a implies that we have to find a type

replacement for type variable a, which is a supertype of List<String> and
List<Integer>. In the Java language wildcards are added by replacing a pa-
rameter in a generic type by ?. Additionally they can hold a upper or lower
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genList () {
if( ... ) {

return new
List <String >();

} else {
return new

List <Integer >();
}

}

(a) Java method with missing return type

List <?> genList () {
if( ... ) {

return new
List <String >();

} else {
return new

List <Integer >();
}

}

(b) Correct type

bound restriction like List<? super String>. Our representation of this type
is: X : [Object..String].List<X> Every wildcard has a name (X in this case) and
an upper and lower bound (respectively Object and String).

c ::= T⋖ T Constraint
T, U, L ::= a | X | N Type variable or Type
N, S ::= X : [L..U].C<T> Class Type
This paper describes a Unify algorithm to solve these constraints. Unify

computes a set of possible substitutions σ for all type variables in the input
constraints.

1.2 Challenges

The introduction of wildcards adds additional challenges. Type variables can also
be used as type parameters, for example List<String> ⋖ List<a>. A problem
arises when replacing type variables with wildcards.

Lets have a look at two examples:

– Example 1. The first one is a valid Java program. The type List<? super
String> is capture converted to a fresh type variable X which is used as the
generic method parameter A.
Java uses capture conversion to replace the generic A by a capture converted
version of the ? super String wildcard. Knowing that the type String is
a subtype of any type the wildcard ? super String can inherit it is safe to
pass "String" for the first parameter of the function.

<A> List<A> add(A a, List<A> la) {}

List<? super String> list = ...;
add("String", list);

The constraints representing this code snippet are:

String⋖ a, X : [String..Object].List<X>⋖ List<a>

Here σ(a) = X is a valid solution.
The correct solution here is to replace a with a capture converted version of
X.
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– Example 2. This example displays an incorrect Java program. The method
call to concat with two wildcard lists is unsound. Each list could be of a
different kind and therefore the concat cannot succeed.

<A> List<A> concat(List<A> l1, List<A> l2) {}

List<?> list = ... ;
concat(list, list);

The constraints for this example are:
X : [⊥..Object].List<X>⋖ List<a>,
X : [⊥..Object].List<X>⋖ List<a>
Remember that the given constraints cannot have a valid solution. In this ex-
ample the Unify algorithm should not replace a with the captured wildcard
X.

The Unify algorithm only sees the constraints with no information about
the program they originated from. The main challenge was to find an algorithm
which computes σ(a) = X for example 1 but not for example 2.

2 Unify

The Unify algorithm computes the type solution.

Input: Constraint set C = {T⋖ T, T
.
= T . . .} The input constraints must be of

the following format:
c ::= T⋖ T Constraint
T, U, L ::= a | X | N Type variable or Type
N, S ::= X : [L..U].C<T> Class Type

Additional requirements:
– The input only consists of ⋖ constraints
– No free variables in type parameters. a ⋖ X.List<X> is valid.
– the input is a list of constraints. It cannot be a set. A constraint set

containing the constraint a ⋖ T twice is a different to one that contains
it only once.

Output: Set of unifiers Uni = {σ1, . . . , σn} and an environment W

The Unify algorithm internally uses the following data types:
C ::= c Constraint set
c ::= T⋖ T | T .

= T Constraint
T, U, L ::= a | G Type variable or Type
G ::= X | N Wildcard, or Class Type
N, S ::= △.C<T> Class Type
△ ::= W Wildcard Environment
W ::= X : [L..U] Wildcard
With C being class names and A being wildcard names. The wildcard type

X : [L..U] consist out of an upper bound U, a lower bound L and a name X.
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(Upper)
W ∪ {A : [L..U]} ⊢ C ∪ {A⋖ T}
W ∪ {A : [L..U]} ⊢ C ∪ {U⋖ T}

(Lower)
W ∪ {A : [L..U]} ⊢ C ∪ {T⋖ A}
W ∪ {A : [L..U]} ⊢ C ∪ {T⋖ L}

(Bot)
W ⊢ C ∪ {⊥⋖ T}
W ⊢ C

(Pit)
W ⊢ C ∪ {a ⋖⊥}
W ⊢ C ∪ {a .

= ⊥}

Fig. 2: Wildcard reduce rules

(Equals)
W ⊢ C ∪ {G .

= G′}
W ⊢ C ∪ {G⋖ G′, G′ ⋖ G}

(Erase)
W ⊢ C ∪ {T .

= T}
W ⊢ C

(Erase)
W ⊢ C ∪ {T⋖ T}
W ⊢ C

(Swap)
W ⊢ C ∪ {T .

= a}
W ⊢ C ∪ {a .

= T}

(Circle)
W ⊢ C ∪ {a1 ⋖ a2, a2 ⋖ a3, . . . , an ⋖ a1}
W ⊢ C ∪ {a1 .

= a2, a2
.
= a3, . . . , an

.
= a1} n > 0

Fig. 3: Constraint normalize rules
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(Match)

W ⊢ C ∪ {a ⋖∆.C<T>, a ⋖∆′.D<T′>}

W ⊢ C ∪





a ⋖ A : [l ..u].C<A>, l ⋖ u,

A : [l ..u].C<A>⋖∆.C<T>,
A : [l ..u].C<A>⋖∆′.D<T′>





fresh A : [l ..u]
C ≪ D

(Reduce)
W ⊢ C ∪ {B : [L′..U′].C<S>⋖ A : [L..U].C<T>}
W ∪ C : [L′..U′] ⊢ C ∪ {[C/B]S .

= [a/A]T, a ⋖ [a/A]U, [a/A]L⋖ a}
a fresh
C fresh

(Adopt)
W ⊢ C ∪ {a ⋖ N, b ⋖∗ a, b ⋖ N′}
W ⊢ C ∪ {a ⋖ N, b ⋖∗ a, b ⋖ N′, b ⋖ N}

(Adapt)
W ⊢ C ∪ {∆.C<T>⋖∆′.D′<T′>}
W ⊢ C ∪ {∆.D<[T/X]S>⋖∆′.D′<T′>}

C ≪ D′

class C<X> ◁ D<S>

Fig. 4: Constraint reduce rules

The (match) rule generates fresh wildcards A : [l ..u]. Their upper and lower
bounds are fresh type variables.

Wildcards consist out of three parts. A name, a scope and a upper and lower
bound.

Wildcards are not reflexive. A box of type X.Box<X> is able to hold a value of
any type. It could be a Box<String> or a Box<Integer> etc. Also two of those
boxes do not necessarily contain the same type. But there are situations where
it is possible to assume that. For example the type X.Pair<Box<X>, Box<X>> is a
pair of two boxes, which always contain the same type. Inside the scope of the
Pair type, the wildcard X stays the same.

The algorithm starts with an empty wildcard environment W. Only the re-
duce rule adds wildcards to that environment. And every added wildcard gets
a fresh unique name. This ensures the wildcard environment W never gets the
same wildcard twice.

When a new type is generated by the Unify algorithm it always has the form
A.C<A>.

Step 1: Apply the rules depicted in the figures 3, 4 and 5 exhaustively.
Starting with the (circle) rule. Afterwards the other rules in figure 3.

The first step of the algorithm is able to remove wildcards. Removing a
wildcard works by setting its lower and upper bound to be equal. (Def: Object =
A : [Object..Object]). The (Equals) rule is responsible for this.

Example:

W ∪ {X : [l ..u]} ⊢ C ∪ {Object .
= X, l ⋖ u}

W ∪ {X : [l ..u]} ⊢ C ∪ {Object⋖ X, X⋖ Object, l ⋖ u}
W ∪ {X : [l ..u]} ⊢ C ∪ {Object⋖ l , u ⋖ Object, l ⋖ u}
. . .

W ∪ {X : [Object..Object]} ⊢ C
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≪ relation: The ≪ relation is the reflexive and transitive closure of the extends
relations:

C<X ◁ N> ◁ D<N>
C ≪ D C ≪ C

C ≪ D, D ≪ E
C ≪ E

The algorithm uses it to determine if two types are possible subtypes of one
another. This is needed in the (adapt) and (match) rules.

Wildcard renaming: The (reduce) rule separates wildcards from their envi-
ronment. At this point each wildcard gets a new and unique name. To only
rename the respective wildcards the reduce rule renames wildcards up to
alpha conversion: ([C/B] in the (reduce) rule)

[A/B]B = A

[A/B]C = C if B ̸= C

[A/B]∆.N = ∆.[A/B]N if B /∈ ∆

[A/B]∆.N = ∆.N if B ∈ ∆

Fresh Wildcards: fresh A : [l ..u] generates fresh wildcards. The new names A

are fresh, aswell as the type variables u and l , which are used for the upper
and lower bounds.

Step 2: We apply the rules (subst) and (ground) exhaustively to C ′′:

(Subst)
W ⊢ C ∪ {a .

= T}
[T/a]W ⊢ [T/a]C ∪ {a .

= T} a /∈ T

(Ground)
W ⊢ C ∪ {a ⋖ T, a ⋖ S}
W ⊢ C ∪ {a .

= ⊥}

We fail if we find any a
.
= T such that a occurs in T.

If atleast one substitution is possible the algorithm returns to step 1.

Step 3:
If there are no (T ⋖ a) constraints remaining in the constraint set C and C

is in solved form then C is a valid solution.
Otherwise for every T ⋖ a constraint, the unify algorithm has to consider

every possible supertype of T. There are two different ways of handling a T⋖ a
constraint:

(Same)
W ⊢ C ∪∆.C<T>⋖ a

W ⊢ C ∪ {∆.C<T>⋖ a, a
.
= X : [l ..u].C<X>, }

class C<X> ◁ D<N>
fresh X : [l ..u]

(Super)
W ⊢ C ∪∆.C<T>⋖ a
W ⊢ C ∪ {∆.D<[T/X]N>⋖ a} class C<X> ◁ D<N>

The first one attempts to give a a more general type by replacing only the
type parameters with fresh wildcards. The second variation sets a to the direct
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supertype of type C. For the constraint Object⋖a the algorithm can only apply
a

.
= Object, because Object has no other supertype than itself.
Constraints of the form {a ⋖ N, a ⋖∗ b} need to be handled in a similiar

fashion. The type variable b could either be a sub or a supertype of the type N

in this scenario. We have to consider both possibilities:

1.
W ⊢ C ∪ {a ⋖ N, a ⋖∗ b}
W ⊢ C ∪ {a ⋖∗ b, b ⋖ N} (Lower)

2.
W ⊢ C ∪ {a ⋖ N, a ⋖∗ b}
W ⊢ C ∪ {a ⋖ N, a ⋖∗ b, N⋖ b} (Raise)

Constraints of the form {a ⋖ T} with fv(T) ̸= ∅ leave two options. The wild-
cards in question must be negated by giving them the same upper and lower
bound or the type variable a becomes the bottom type ⊥, which is a subtype of
every type. Another possible subtype would be the type T itself, but this would
mean to substitute a type with free wildcard variables (a .

= T).

1.
W ∪ {X : [L..U]} ⊢ C ∪ {a ⋖∆.N}
W ∪ {X : [L..U]} ⊢ C ∪ {a ⋖∆′.N, U⋖ L, L⋖ U}

X ∈ fv(N)
∆′ = ∆ ∪ {X : [L..U]} (Force)

2.
W ∪ {X : [L..U]} ⊢ C ∪ {a ⋖ T}
W ⊢ C ∪ {a .

= ⊥} X ∈ fv(T)

The specification of the Unify algorithm has only two rules generating .
=-

Constraints , (Reduce) and (Ground). .
=-Constraints and the accompaning

substitutions are dangerous respective to the soundness of the algorithm. For
the soundness proof of the Unify algorithm we have to show every generation of
equals constraints and the subsequent application of the (subst) rule is correct.
We try to use them as sparsely as possible to simplify the soundness proof.
You can notice this at (Equals) or (Force): Instead of setting U

.
= L, we say

U⋖ L, L⋖ U.
Step 4: Eliminate subtyping constraints between variables by exhaustive appli-
cation of rule (sub-elim) and (erase). Applying this rule does not affect the solve
form property.

(sub-elim)
C ∪ {a ⋖ b}
[a/b]C ∪ {b .

= a}

Afterwards create the output (γ, σ) with:

σ′ = {b 7→ B | (b ⋖ T) ∈ C}
σ = {a 7→ σ′(T ) | (a .

= T ) ∈ C}
γ = W ∪ {B : [⊥..σ(T)] | (b ⋖ T) ∈ C}

Solved form A set C of constraints is in solved form if it only contains con-
straints of the following form:
1. a ⋖ b
2. a

.
= b

164



3. a
.
= A

4. a ⋖W .C<T>
5. a

.
= W .C<T>, with a /∈ T

In case 4 and 5 the type variable a does not appear on the left of another
constraint of the form 4 or 5.

3 High-Level rules

The Unify specification tries to be as simple as possible with each rule doing
only one simple transformation. We define additional transformation rules, which
deviate directly from the given algorithm. They come to use in the examples
section.

(Encase)
W ⊢ C ∪ {C<T>⋖ X : [L..U].C<X>}
W ⊢ [T/x ]C ∪ {T⋖ U, L⋖ T}

(Flatten)
W ⊢ C ∪ {T⋖ a, a ⋖ T}
W ⊢ [T/a]C ∪ {a .

= T}

(Assimilate)
W ⊢ C ∪ {X : [l ..u].C<X>⋖ C<T>, l ⋖ u}
W ⊢ C ∪ {u .

= T, l
.
= T}

(Narrow)
W ⊢ C ∪ {X : [L..U].C<X>⋖ X : [L′..U′].C<X>}
W ⊢ C ∪ {L′ ⋖ L, U⋖ U′}

(Redeem)
W ⊢ C ∪ {∆.C<X>⋖ X : [⊥..Object].C<X>}
W ⊢ C

(Standoff)
W ∪ {X : [L..U], Y : [L′..U′]} ⊢ X

.
= Y

W ∪ {X : [L..U], Y : [L′..U′]} ⊢ U⋖ L′, U′ ⋖ L

Fig. 5: Common transformations

4 Related Work

In this section we consider the older Java type unification approach [3, 5] where
we do not consider the so-called capture conversion. This approach is integrated
in Java–TX at the moment.
The approach is to continue the subtyping ordering on wildcard-types. Therefore
we considered the semantics of wildcard-types:

? extends θ: There is a subtype of θ.
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? super θ′: There is a supertype of θ′.

From this follows the definition: For θ <: θ′ holds

θ <: ? super θ′,

? extends θ <: θ′, and

? extends θ <: ? super θ′.

This definition guarantees that <: is not reflexiv on wildcard-types.
Let us consider Example 5 and Example 5 again. The add method is no problem
as String <: ? super String.
But the concat method would not work. The type inference algorithm would
infer the following signature:

<A,B extends A> void concat(List <A> l1, List <B> l2) {
for (B x:l2) l1.add(x);

}

A method call
rec.<? extends Object, ? extends Object>conat(list, list)

would fail as ? extends Object ≮: ? extends Object.
This means Java–TX has two drawbacks. On the one hand a standard Java
method

<A> void concat(List <A> l1, List <A> l2) { ... }

can not be called with wildcards in general as capture conversion is necessary to
guarantee soundness. On the other hand a call with the same parameter is not
possible even if the method is type inferred by Java–TX.

But there are some pros in the Java–TX approach.

Let us consider the following print method:

<T> void print(Vector <T> v1, Vector <T> v2) {
System.out.println(v1);
System.out.println(v2);

}

Vector <?> v1 = ...
Vector <?> v2 = ...
print(v1 , v2);

The method call would fail as the capture conversion produces two different fresh
type variables for the wildcards, respectively. This program can be made correct
using two different type variables:

<T,S> void print(Vector<T> v1, Vector<S> v2).
But in the following example this is not possible.

166



<X> void assign(Vector <X> v1 , Vector <X> v2) {
v1 = v2;

}

void main() {
Vector <?> v1 = ...;
Vector <?> v2 = ...;
v1 = v2; //OK
assign(v1, v2); //not type correct but sound

}

As Vector<?> is a subtype of itself the assigment v1 = v2; as well as the
method call assign(v1, v2); are type correct. Therefore in Java–TX this would
be correct.

5 Examples

Example 1

<A> List<A> add(A a, List<A> la) {}

List<? super String> l;
add("String", l);

Constraints:
String⋖ a,
X : [String..].List<X>⋖ List<a>

String⋖ a, X : [String..Object].List<X>⋖ List<a>

X : [String..Object] ⊢ String⋖ a, X
.
= a

X : [String..Object] ⊢ String⋖ a, a
.
= X

X : [String..Object] ⊢ String⋖ X , a
.
= X

X : [String..Object] ⊢ String⋖ String , a
.
= X

X : [String..Object] ⊢((((((String⋖ X, a
.
= X

(Reduce)

(Swap)

(Subst)
(Lower)

(Erase)

The constraint set C = {a .
= X} is in solved form and Unify terminates.

Example 2

<A> void concat(List<A> l1, List<A> l2) {...}

List<?> l = ...;
concat(l, l)

Constraints:
X : [⊥..Object].List<X>⋖ List<Z>,
X : [⊥..Object].List<X>⋖ List<Z>

This example shows an ill typed Java code snippet. concat requires two
lists of the same type. The goal is to replace Z with a type, which suffices the
constraints X.List<X> ⋖ List<Z>, X.List<X> ⋖ List<Z>. This is not possible.
Replacing Z with X is not correct. A wildcard is only valid inside its scope.
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This seems unintuitive here, because concat is given the same exact list twice.
Nonetheless the Unify algorithm has to spot the error here. The reduce rule
performs a capture conversion every time a wildcard type is unpacked.

As you can see the equality relation (=) is not reflexive on the types used
here. Despite the subtype relation (<:) being reflexive. T <: T holds, but T ̸= T

does not. This is the reason the Unify algorithm cannot use sets and has to store
the constraints in a set. The constraints a ⋖ T, a ⋖ T have a different meaning
than the constraint a ⋖ T alone.

X.List<X>⋖ List<z>, X.List<X>⋖ List<z>
A : [⊥..Object], B : [⊥..Object] ⊢ A

.
= z , B

.
= z

A : [⊥..Object], B : [⊥..Object] ⊢ z
.
= A , B

.
= z

A : [⊥..Object], B : [⊥..Object] ⊢ z
.
= A, B

.
= A

A : [⊥..Object], B : [⊥..Object] ⊢ z
.
= A, ⊥⋖ Object,⊥⋖ Object

Error: Object⋖⊥

(Reduce)
(Swap)

(Subst)

(Standoff)

5.1 Example Pair

<X, Y> Pair<X,Y> make(List<X> l1, List<Y> l2) {...}
<Z> Y compare(Pair<Z,Z> p) {...}

void m(List<?> l) {
compare(make(l, l));

}

Constraints:
A : [⊥..Object].List<A>⋖ List<x>,
A : [⊥..Object].List<A>⋖ List<y>,
Pair<x , y>⋖ Pair<z , z>

Unify annotates fresh wildcard names during the reduce step. As soon as a
wildcard leaves its scope it has to get an unique name. This is the reason this
example has no solution. The input program is incorrect.

A : [⊥..Object].List<A>⋖ List<x> ,

A : [⊥..Object].List<A>⋖ List<y> ,

Pair<x , y>⋖ Pair<y , y>

B : [⊥..Object] , B
.
= x ,

C : [⊥..Object] ⊢ C
.
= y ,

x
.
= z , y

.
= z

B : [⊥..Object], C : [⊥..Object] ⊢ B
.
= C, . . .

Object⋖⊥, Object⋖⊥, . . .

Error: Object⋖⊥

(Reduce)

(. . . )
(Standoff)

5.2 Capture Conversion Example

<X> Pair<X,X> make(List<X> l) {...}
<Y> Y compare(Pair<Y,Y> p) {...}
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m(List<?> l) {
return compare(make(l));

}

Constraints:
A : [⊥..Object].List<A>⋖ List<x>,
Pair<x , x>⋖ Pair<y , y>,
y ⋖m

A : [⊥..Object].List<A>⋖ List<x>,
Pair<x , x>⋖ Pair<y , y>, y ⋖m

B : [⊥..Object] ⊢ B
.
= x , x

.
= y , y ⋖m

B : [⊥..Object] ⊢ x
.
= B , x

.
= y , y ⋖m

B : [⊥..Object] ⊢ x
.
= B, B

.
= y , y ⋖m

B : [⊥..Object] ⊢ x
.
= B, y

.
= B , y ⋖m

B : [⊥..Object] ⊢ x
.
= B, y

.
= B, B ⋖m

B : [⊥..Object] ⊢ x
.
= B, y

.
= B, Object⋖m

(Reduce)

(Swap)

(Subst)
(Swap)

(Subst)
(Upper)

Solution:

Object m(List<?> l) {
return compare(make(l));

}

5.3 Method Parameter Example

Full example of wildcards being used in method parameters.

m(l, la, lb){
la.add(1);
lb.add("abc");
ll.add(la);
ll.add(lb);

}

Constraints:
la⋖List<a>, Integer⋖a, a⋖Object

lb⋖List<b>, String⋖ b, b⋖Object

ll ⋖ List<x>, la ⋖ x
ll ⋖ List<y>, lb ⋖ y

We outline the steps needed to create a correct solution for this constraint set.
Hereby we take the direct route by always applying the correct transformations.
The Unify algorithm usually can’t do that and has to try multiple possibilities
(by backtracking for example).

First we show the transformation of the constraints la⋖List<a>, Integer⋖
a, a ⋖ Object.
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la ⋖ List<a>, Integer⋖ a , a ⋖ Object

la ⋖ List< a >, Integer⋖ a , a
.
= Integer , a ⋖ Object

la ⋖ List< Integer >, Integer⋖ Integer ,

a
.
= Integer, Integer ⋖ Object

la ⋖ List<Integer>,((((((((
Integer⋖ Integer,

a
.
= Integer, Integer⋖ Object

la ⋖ List<Integer>, a .
= Integer, Object⋖ Object

la ⋖ List<Integer>, a .
= Integer,(((((((

Object⋖ Object

Result: la ⋖ List<Integer>, a .
= Integer

(Same)

(Subst)

(Erase)

(Super)

(Erase)

The same sequence of rules applies for the lb ⋖ List<b>, Integer ⋖ b, b ⋖
Object constraints, leading to constraint set:

la ⋖ List<a>,
Integer⋖ a, a ⋖ Object,
lb ⋖ List<b>,
String⋖ b, b ⋖ Object,
ll ⋖ List<x>,
la ⋖ x ,
ll ⋖ List<y>,
lb ⋖ y

→

la ⋖ List<Integer>,
lb ⋖ List<String>,
a

.
= Integer

b
.
= String

ll ⋖ List<x>,
la ⋖ x ,
ll ⋖ List<y>,
lb ⋖ y

Now we have a look at the constraints la⋖List<Integer>, la⋖x , ll⋖List<x>
la ⋖ List<Integer>, la ⋖ x , ll ⋖ List<x>

la ⋖ List<Integer>, la ⋖ x , List<Integer>⋖ x , ll ⋖ List<x>
la ⋖ List<Integer>, la ⋖ x ,

List<Integer>⋖ x , x
.
= X : [l ..u].List<X> , ll ⋖ List<x>

la ⋖ List<Integer>, la ⋖ X : [l ..u].List<X> ,

ll ⋖ List< X : [l ..u].List<X> >,

List<Integer>⋖ X : [l ..u].List<X> , x
.
= X : [l ..u].List<X>

la ⋖ List<Integer>, la ⋖ X : [l ..u].List<X>,
ll ⋖ List<X : [l ..u].List<X>>,

Integer
.
= x ′, x ′ ⋖ u, l ⋖ x ′ , x

.
= X : [l ..u].List<X>

la ⋖ List<Integer>, la ⋖ X : [l ..u].List<X>,
ll ⋖ List<X : [l ..u].List<X>>,

x ′ .
= Integer , x ′ ⋖ u, l ⋖ x ′ , x

.
= X : [l ..u].List<X>

la ⋖ List<Integer>, la ⋖ X : [l ..u].List<X>,
ll ⋖ List<X : [l ..u].List<X>>,

x ′ .
= Integer , Integer ⋖ u, l ⋖ Integer , x

.
= X : [l ..u].List<X>

(Raise)

(Same)

(Subst)

(Reduce)

(Swap)

(Subst)

Note: At this point we could set u
.
= Integer, to satisfy the Integer ⋖ u

constraint. But this leads to an unsolvable constraint set. The right way is to
set the upper bound u to Object:
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Step 2

la ⋖ List<Integer>,
lb ⋖ List<String>,
a

.
= Integer

b
.
= String

ll ⋖ List<x>,
la ⋖ x ,
ll ⋖ List<y>,
lb ⋖ y

la ⋖ X : [⊥..Object].List<X>,
x ′ .

= Integer,
x

.
= X : [⊥..Object].List<X>,

la ⋖ List<Integer>,
lb ⋖ List<String>,
a

.
= Integer

b
.
= String

ll ⋖ List<X : [⊥..Object].List<X>>,
ll ⋖ List<y>,
lb ⋖ y ,
u

.
= Object,

l
.
= ⊥

Now we apply the match rule to
la ⋖ List<Integer>,
la ⋖ X : [⊥..Object].List<X>

la ⋖ List<Integer>, la ⋖ X : [⊥..Object].List<X>
la ⋖ Z : [l ′′..u ′′].List<Z>, l ′′ ⋖ u ′′,
Z : [l ′′..u ′′].List<Z>⋖ List<Integer>,
Z : [l ′′..u ′′].List<Z>⋖ X : [⊥..Object].List<X>
la ⋖ Z : [l ′′..u ′′].List<Z>, l ′′ ⋖ u ′′,

Z : [l ′′..u ′′].List<Z>⋖ List<Integer>
la ⋖ Z : [l ′′..u ′′].List<Z>, l ′′ ⋖ u ′′,

u ′′ .
= Integer , l ′′

.
= Integer

la ⋖ Z : [ Integer .. Integer ].List<Z>,
Integer ⋖ Integer ,

u ′′ .
= Integer, l ′′

.
= Integer

la ⋖ Z : [Integer..Integer].List<Z>,
u ′′ .

= Integer, l ′′
.
= Integer

(Match)

(Redeem)

(Assimilate)

(Subst)

(Erase)

To recapitulate the complete transformation of the constraints

la ⋖ List<Integer>, la ⋖ x , ll ⋖ List<x>:
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la ⋖ List<Integer>,
lb ⋖ List<String>,
a

.
= Integer

b
.
= String

ll ⋖ List<x>,
la ⋖ x ,
ll ⋖ List<y>,
lb ⋖ y

→

x
.
= X : [⊥..Object].List<X>,

la ⋖ Z : [Integer..Integer].List<Z>,
lb ⋖ List<String>,
a

.
= Integer

b
.
= String

ll ⋖ List<X : [⊥..Object].List<X>>,
ll ⋖ List<y>,
lb ⋖ y
u

.
= Object,

l
.
= ⊥

Applying the same rules analogously to lb⋖List<String>, lb⋖y , ll⋖List<y>:

la ⋖ List<Integer>,
lb ⋖ List<String>,
a

.
= Integer

b
.
= String

ll ⋖ List<x>,
la ⋖ x ,
ll ⋖ List<y>,
lb ⋖ y

→

x
.
= X : [⊥..Object].List<X>,

la ⋖ Z : [Integer..Integer].List<Z>,
y

.
= X : [⊥..Object].List<X>,

lb ⋖ Z : [Integer..Integer].List<Z>,
a

.
= Integer

b
.
= String

ll ⋖ List<X : [⊥..Object].List<X>>,
ll ⋖ List<X : [⊥..Object].List<X>>,
u

.
= Object,

l
.
= ⊥

The last step is to apply the match rule to the constraints
ll ⋖ List<X : [⊥..Object].List<X>> ll ⋖ List<X : [⊥..Object].List<X>>

This leaves us with a constraint set, which is in solved form and therefore a
valid solution.

x
.
= X : [⊥..Object].List<X>,

la ⋖ Z : [Integer..Integer].List<Z>,

y
.
= X : [⊥..Object].List<X>,

lb ⋖ Z : [Integer..Integer].List<Z>,

a
.
= Integer

b
.
= String

ll ⋖ List<X : [⊥..Object].List<X>>,

u
.
= Object,

l
.
= ⊥

This result is equivalent to the following typisation of the input method:
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void m(List<List<? extends Object>> l,
List<Integer> la, List<String> lb){

la.add(1);
lb.add("String");
l.add(la);
l.add(lb);

}

6 Conclusion and Further Work

The problems introduced in the openening 1.2 can be solved via our Unify
algorithm (see examples 5 and 5). As you can see by the given examples our
type inference algorithm can calculate type solutions for programs involving
wildcards.

This is currently a draft paper. We plan to extend it with a constraint gen-
eration algorithm aswell as a well defined way to insert type solutions into the
typeless input program. Hereby we plan to use Featherweight Java as a starting
point and to proof soundness and completeness.
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Abstract. LLJava is a low-level programming language that runs on
the Java Virtual Machine. It represents the capabilities of the machine
faithfully, but abstracts from tedious technical details of its bytecode.
LLJava comes in two forms: as a stand-alone language with textual rep-
resentation and a full-�edged compiler [1] (implemented in Java), and
as LLJava-Live, a Java builder API for the intermediate representation
[3]. LLJava-Live supports bytecode generation, class loading, and object
linking at run-time. It works well above the abstraction level of pop-
ular JVM libraries such as ASM, and supports sophisticated dynamic
meta-programming. We review the key design features of both LLJava
and LLJava-Live, and discuss some complete [2] and work-in-progress [4]
applications.
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1 Introduction

In practice, compilers are developed iterativly [1]. First compilers for sublan-
guages starting from an initial version are developed and successively extended
until the whole programming language is implemented. Then optimizations are
been added. This paper introduces the idea to make this approach agile, i.e.,
starting from a compiler the most simple program of a programming language
and extending it step by step for each language concept:

Initial Version +∆0.1 + · · ·+∆0.n

where ∆0.i is a language concept (including built-in types, built-in proce-
dures, and standard libraries). Furthermore, we want to examine whether this
construction principle can also be applied (using the same iterations as in the
construction) for the definition of the semantics and the verification of the com-
piler.

Our hypothesis is that this iterative construction possible without changing
previous implementations, semantics definitions, and verification proofs provided
that an adequate iteration plan is developed prior to starting the agile develop-
ment process.

We plan to demonstrate this approach by the example of a compiler from
Sather-K to the MIPS assembly language. Sather-K [6] is chosen because it is an
object-oriented language that contains a sufficiently number of different language
concepts (including built-in classes and methods) such as (among others):

– Parameterized Classes with static call-by-name semantics
– Notion of used classes
– Streams/Iterators
– Polymorphic and monomorphic classes
– Builtin Functions and Builtin classes
– Value Classes and Reference Classes
– Distinction subtyping and inheritance
– Methods and Streams as (assignable) values
– Partial Evaluation
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and it is a language that is far less complex (the language report [5] has only 35
pages) than other languages, e.g. Java, C++, or C#. Although Sather-K is not a
toy language, it seems to be manageable and feasable to build a verified compiler.
The MIPS assembly target language is chosen since it is well-documented and
there are emulators such as Spim [17] and the related tool QtSpim which [18]
supports debugging of MIPS assembly code.

We plan to examine and answer the following research questions:

– Is a small step development of a compiler possible that avoids refactorings?
– What are the requirements and tools that support this development?
– Is it possible to define static and dynamic semantics along the same iterations

as the compiler develops without refactoring of previous versions?
– Is it possible to verify the compiler along the same iterations as it develops

without revising previous proofs?
– What are the requirements for tool supporting the iterative verification pro-

cess?

The paper is organized as follows: Section 2 discusses iterative compiler de-
velopment and Section 3 compiler verification approaches. Each of these sections
starts with an overview of the state-of-the-art and proposes then the approaches
to be used for agile development. Section 4 concludes the paper. In particular, it
discusses first experiences on building the initial version in the iterative process.

2 Iterative Compiler Development

The process of iterative compiler development based on a hierarchy of sub-
languages has been prososed by Basili and Turner [1]. We were not able to
find other works on iterative compiler development - in particular no work on
agile compiler development.

We practice the iterative development approach in our compiler lab where
students implement the first 30 steps in developing a compiler for the language
LAX (Appendix A in [25]). The initial version is pretty heavy, but the subse-
quent versions are developed in general rapidly. Some iteration cycles take only
a few hours. Therefore the approach is almost agile. The commonalities to agile
approaches is that each sprint is adding a new language construct (there is only
one version that solely refactors the attribute grammar). The compiler is kept
running - even within sprints. Hence, continous integration is practiced with
large test sets (in higher versions several millions generated test cases).

Remark 1. In the Sather-K project, the large test set might be replaced by a
smaller test set and extended by the verification of each version.

However, there are also differences to agile approaches. The first and probably
most important one is that the initial version requires a lot of work because this
is important for the subsequent versions. Basili and Turner mentioned already
the importance of the initial version [1] because great attention is required for
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major decisions in the compiler implementation. A wrong decision may lead in a
subsequent version to a complete refactoring. We made the same experience on
the effort of the initial version in the compiler lab as well as in the construction
of the initial version of the Sather K project. However each decision in any
version must be carefully examined to avoid points-of-no-returns that may lead
to refactorings in subsequent versions.

This is the second major difference to agile approaches: if a sprint in an agile
development is finished then the next sprint is being planned. This plan can be
to refactor the code in order to eleminate defects and bugs. In compiler devel-
opment this might become painful and lead to partial re-design of the current
compiler version. Thus, for agile compiler development, it is essential to respect
the complete source language (and possibly target language) in order to avoid
refactorings.

Remark 2. We believe that comparable practices might be useful in agile ap-
proaches.

Since the complexitiy of the added language concepts are different, the sprint
length may vary. For example, adding an integer addition is much less effort than
adding for if-then-else expressions and statements since the latter requires the
implementation of basic block graphs (provided that this is the first version with
branching control).

This almost agile approach requires tool support. Compiler tools have a so-
phisticated foundational background. We would like to demonstrate that the
following concepts used by compiler generators support the almost agile com-
piler development approach

– LALR(1)-grammars [16]. There is evidence as LALR(1)-grammars support
modularity in language design and implementation [3] although there are
other papers that state the opposite [14]

– Ordered attribute grammars [12]: for a new language concept, attributes and
attribution rules need to be added. This might require to add also attribution
rules to attribute grammar production of previous sprints. [13] show that
ordered attribute grammars support modularity.

– Configurable Definition Tables: specification of semantic properties are just
being added to a definition table specification [23]

– Tree transformations for generating intermediate representation [9]: new
transformation rules for new language concepts need to be added.

– Bottom-Up Rewrite Systems[22]: For a new instruction in the intermediate
code, a tree grammar rule needs to be added.

– Abstract interpretations for register assignments [26]: In general these are
local abstract interpretations, i.e., on the basic block level. If a version intro-
duces a new target tree instruction, then only a new abstract state transition
needs to be introduced. Register assignment can be implemented only on the
base of the current abstract state.

– Fixed point computations [15]. If a new intermediate language instruction
is being introduced, it is only necessary to add the transfer function for this
instruction.
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Remark 3. There is no formal justification for the extensibiliy of LALR(1)-
grammars and ordered attribute grammars. However, in the compiler lab (where
students develop about 25-30 versions), we never observed shift-reduce or reduce-
reduce conflicts over a period of 10 years.

For ordered attribute grammars, it happened that extensions lead to a non-
ordered attribute grammar. However, in most cases the attribute grammar of
the extended version was absolutely acyclic. This means that adding an arti-
ficial dependency lead to an ordered attribute grammar. Furthermore, if the
extension lead to cyclic induced dependencies, this was a consequence of some
mis-interpretations in previous versions.

We use the Eli-Compiler Toolset [8] since it supports all of the above require-
ments except the tree transformation (this is implemented by C-functions that
are weaved into the compiler).

3 Verified Compilers

The field of compiler verification was already successful, but we are not aware of
any work that systematically investigates the construction process and adopts
the iterative method for compiler construction. Each of the following works uses
operational semantics and base their notion of correctness on preservation of
observable behaviour (with some variants).

The ProCos approach [11] uses proven algebraic identies that are applied
in the compilation. They apply their approach to a small language based on
Dijkstra’s guarded commands. Their approach is based on the assumption that
language concepts are orthogonal. However, language concepts are only orthog-
onal to some extent. Concepts such as e.g. exception handling, break- and con-
tinue statements, explicit return statements influence the semantics of loops,
procedure calls.

In Verifix [7] approaches towards compilers for realistic compilers are con-
sidered. The focus was on the construction approaches towards compilers. Some
proofs are checked using PVS [4]. Verifix allows that the target code may abort
due to lack of resources (such as e.g. exceeding available memory). A complete
back-end producing binary code for the DEC-Alpha processor family has been
proven[27]. Approaches for correct parsing has been developed [10]. Otherwise,
the correctness is based on an abstract syntax including correct static seman-
tic properties. A fully verified compiler for a realistic language has not been
developed.

Schmid, Stärk, and Börger proved the correctness of a compiler from Java
to the Java Virtual Machine [24]. Their approach defines a stack of five sub-
languages. In a certain sense, their approach is iterative with coarse-grained
iteration cycles. The approach doesn’t include machine checked proofs. The se-
mantics is based on abstract syntax including correct static semantic properties
based on the Java language definition. The target code is Java Byte code, but
not the binary. In particular, compilation to machine code of a target processor
is not considered.

178



CompCert [19] is a fully verified compiler for a realistic sub-language of C
that produces PowerPC assembly code. This sub-language has been extended [2].
Furthermore, the compiler includes now optimizations [21, 20]. The correctness
is proven completely with Coq, i.e., the correctness proof is fully checked by
machine. It is use a similar notion of correctness as Verifix since it requires that
safe programs are being compiled. In particular the notion of safe programs
excludes undefined behaviour and also violation of resource constraints. The
target code is the symbolic assembly code of the PowerPC. The proofs start
with abstract syntax and static semantic properties. The correctness of parsing
towards attributed abstract syntax trees is not considered.

As mentioned above, none of these works consider the process of construction
of verified compilers using lightweight iteration cycles.

Furthermore, for verified compilers the computation of static semantic prop-
erties must be verified. For example, the instantiation of parameters of param-
eterized classes is a static property in Sather-K and in many other languages
having generics (e.g. C++, Eiffel, C#, Ada, Haskell, ML). The correct instanti-
ation of generic parameters is essential for compiler correctness. For this purpose,
we consider to apply the ProCos approach. However, there are many more static
semantic properties that need to be correctly computed in a compiler. Another
issue is that all of the above approaches may allow that a compiler produces code
from source text that doesn’t belong to the source language. This is certainly
unexpected. Instead, a verified compiler should reject texts that doesn’t satisfy
static semantic properties defined by the source language definition.

None of the above approaches consider built-in procedures, built-in classes,
or built-in types. These built-in features interact with the dynamic semantics
but are usually not part of it. There are several possibilities to deal with built-in
properties. For types and classes, the value must be representend in the machine
and the correctness of the functions/procedures provided by the type must be
proven. For the latter, many functions are built-in. We currently see the following
alternatives: First, the built-in function is implemented using assembly code
of the target machine, the correctness of the implementation is proven, and
the correctnes of the function call must be proven w.r.t. the assembly code
implementation. Second, built-in functions are implemented using intermediate
code and each call inlines the intermediate code. Both, the correctness of the
implementation and inlining must be proven.

For the agile verified compiler development, a semantics definition formalism
that suppors fine-grained iteration as well would be helpful. The approaches by
Stärk, Schmid and Börger [24], Verifix [7], and CompCert [19] all use operational
semantics. The Abstract State Machine approach used in [24, 7] demonstrate that
this base of semantic definition supports iterative construction of operational
semantics that doesn’t require changes in preceeding versions.

A tool support for checking the correctness proof is helpful for the agile
development of verified compilers. In particular, these can be used for a regres-
sion verification, analogously regression testing, that ensures that proofs of the
previous version really remain valid.
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Thus, the following challenges must be solved for an almost agile development
of verified compilers:

– Verification of static semantic properties
– Verification of built-in classes, built-in types, and built-in procedures/functions
– fine-grained successive language semantics definition extensions without refac-

toring the language semantics
– Verification of the extensions made in the sprint
– Automatic regression verification.

4 Conclusions

Currently, we have developed the kernel version and planned over 200 iteration
cycles. Each iteration corresponds to a language concept, a builtin function, a
builtin class, a class of the standard library, or a method of the standard library.
It must be carefully examined which iteration influences other iterations in order
to avoid refactorings.

class MAIN is
main is
end - - main

end - - MAIN

Fig. 1. Sather-K Program for the Initial Version

The initial version is a main class only containing a main method with an
empty body, cf. Fig. 1. The main class must be provided when calling the com-
piler, otherwise the file name converted to upper case letters is chosen as the main
class. The semantic is a static method call MAIN::main. The implementation of
this initial version requires already:

– the implementation of runtime stack into the memory of the target machine,
– the implementation of (parameterless) procedure calls,
– successive static transformations according to the language definition,
– building basic block graphs for procedures where instructions in a basic

block are intermediate language trees (note that administrative information
for procedure frame such as dynamic predecessors, return address etc. need
to be managed),

– code selection by bottom-up rewrite systems and
– local abstract interpretation for register assignment.

Furthermore, the compiler for the initial version has already the same phases
as the final compiler (although these are not required for the initial version).
According to the language definition there are the following phases:

– Full abstract syntax tree of the program
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– Establish an abstract syntax tree that only contains classes being used start-
ing from the main class (according to the algorithm in the language defini-
tion)

– Establish an abstract syntax tree that expands all instantiations of param-
eterized classes

– Establish an abstract syntax tree that resolves all inheritances
– Generate a basic block graph for the target tree
– Generate MIPS code

Each step analyzes the static semantics that is required for the next step.
Hence, developing the initial kernel version is not lightweight. Important

decisions for the subsequent versions are already done and cannot be altered.
These decisions must be made on the complete language definition such that no
points-of-no-returns are introduced.

The next step in completing the initial version is to define a dynamic se-
mantics and to verify the compiler. The dynamic semantics (and therefore the
verification of the compiler) is based on the abstract syntax in the fourth phase.
After this step, all other 200 planned iteration cycles must be developed accord-
ing the proposed phases.
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